Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(22): 13616-13624, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35616431

ABSTRACT

Hybrid sp-sp2 structures can be efficiently obtained on metal substrates via on-surface synthesis. The choice of both the precursor and the substrate impacts on the effectiveness of the process and the stability of the formed structures. Here we demonstrate that using anthracene-based precursor molecules on Au(111) the formation of polymers hosting sp carbon chains is affected by the steric hindrance between aromatic groups. In particular, by scanning tunneling microscopy experiments and density functional theory simulations we show that the de-metalation of organometallic structures induces a lateral separation of adjacent polymers that prevents the formation of ordered domains. This study contributes to the understanding of the mechanisms driving the on-surface synthesis processes, a fundamental step toward the realization of novel carbon-based nanostructures with perspective applications in nanocatalysis, photoconversion, and nano-electronics.

2.
Phys Chem Chem Phys ; 22(45): 26312-26321, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33175935

ABSTRACT

In recent years there has been growing interest in sp-carbon chains as possible novel nanostructures. An example of sp-carbon chains is the so-called polyyne, characterized by the alternation of single and triple bonds that can be synthesized via pulsed laser ablation in liquid (PLAL) of a graphite target. In this work, by using different solvents in the PLAL process, e.g. water, acetonitrile, methanol, ethanol, and isopropanol, we systematically investigated the role of the solvent in polyyne synthesis and stability, and discussed the possible formation mechanisms. The presence of methyl- and cyano-groups in the solutions influences the termination of polyynes, allowing the detection, of hydrogen-capped polyynes up to H-C22-H, methyl-capped polyynes up to H-C18-CH3 and cyanopolyynes up to H-C12-CN. The assignment of each species was performed via UV-vis spectroscopy and supported by density functional theory simulations of vibronic spectra. In addition, surface-enhanced Raman spectroscopy allowed to highlight the differences in the shape and positions of the characteristic Raman bands of the size-selected polyynes with different terminations (hydrogen, methyl and cyano groups). The stability in time of each polyyne was investigated by evaluating the chromatographic peak area, and the effect of size, terminations and solvents on polyyne stability was individuated.

3.
Materials (Basel) ; 11(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558338

ABSTRACT

Carbon structures comprising sp 1 chains (e.g., polyynes or cumulenes) can be synthesized by exploiting on-surface chemistry and molecular self-assembly of organic precursors, opening to the use of the full experimental and theoretical surface-science toolbox for their characterization. In particular, polarized near-edge X-ray absorption fine structure (NEXAFS) can be used to determine molecular adsorption angles and is here also suggested as a probe to discriminate sp 1 /sp 2 character in the structures. We present an ab initio study of the polarized NEXAFS spectrum of model and real sp 1 /sp 2 materials. Calculations are performed within density functional theory with plane waves and pseudopotentials, and spectra are computed by core-excited C potentials. We evaluate the dichroism in the spectrum for ideal carbynes and highlight the main differences relative to typical sp 2 systems. We then consider a mixed polymer alternating sp 1 C 4 units with sp 2 biphenyl groups, recently synthesized on Au(111), as well as other linear structures and two-dimensional networks, pointing out a spectral line shape specifically due to the the presence of linear C chains. Our study suggests that the measurements of polarized NEXAFS spectra could be used to distinctly fingerprint the presence of sp 1 hybridization in surface-grown C structures.

4.
Nanoscale ; 8(43): 18507-18515, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27782269

ABSTRACT

Developing low cost, highly active and stable electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) using the same electrolyte has remained a major challenge. Herein, we report a novel and robust material comprised of nickel-cobalt nanoparticles coated on a porous nitrogen-doped carbon (NC) thin film synthesized via a two-step pulsed laser deposition technique. The optimized sample (Ni0.5Co0.5/NC) achieved the lowest overpotentials of 176 mV and 300 mV at a current density of 10 mA cm-2 for HER and OER, respectively. The optimized OER activity might be attributed to the available metal oxide nanoparticles with an effective electronic structure configuration and enhanced mass/charge transport capability. At the same time, the porous nitrogen doped carbon incorporated with cobalt and nickel species can serve as an excellent HER catalyst. As a result, the newly developed electrocatalysts manifest high current densities and strong electrochemical stability in overall water splitting, outperforming most of the previously reported non-precious metal-based catalysts.

5.
Chem Commun (Camb) ; 52(80): 11947-11950, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27722241

ABSTRACT

Identification of efficient non-precious metal catalysts for the oxygen evolution reaction (OER) remains a great challenge. Here we report robust cobalt (oxide) nanoparticles deposited on a porous nitrogen-doped carbon (N-carbon) film prepared by pulsed laser deposition under a reactive background gas, which exhibit highly efficient OER performance with a low overpotential and high stability.

6.
Beilstein J Nanotechnol ; 7: 1878-1884, 2016.
Article in English | MEDLINE | ID: mdl-28144537

ABSTRACT

Phosphoric acid is an inorganic acid used for producing graphene sheets by delaminating graphite in (electro-)chemical baths. The observed phenomenology during the electrochemical treatment in phosphoric acid solution is partially different from other acidic solutions, such as sulfuric and perchloric acid solutions, where the graphite surface mainly forms blisters. In fact, the graphite surface is covered by a thin layer of modified (oxidized) material that can be observed when an electrochemical potential is swept in the anodic current regime. We characterize this particular surface evolution by means of a combined electrochemical, atomic force microscopy and Raman spectroscopy investigation.

7.
ACS Nano ; 7(11): 10023-31, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24180577

ABSTRACT

In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.

8.
PLoS One ; 8(3): e58794, 2013.
Article in English | MEDLINE | ID: mdl-23527026

ABSTRACT

Protein misfolding and aggregation in intracellular and extracellular spaces is regarded as a main marker of the presence of degenerative disorders such as amyloidoses. To elucidate the mechanisms of protein misfolding, the interaction of proteins with inorganic surfaces is of particular relevance, since surfaces displaying different wettability properties may represent model systems of the cell membrane. Here, we unveil the role of surface hydrophobicity/hydrophilicity in the misfolding of the Josephin domain (JD), a globular-shaped domain of ataxin-3, the protein responsible for the spinocerebellar ataxia type 3. By means of a combined experimental and theoretical approach based on atomic force microscopy, Fourier transform infrared spectroscopy and molecular dynamics simulations, we reveal changes in JD morphology and secondary structure elicited by the interaction with the hydrophobic gold substrate, but not by the hydrophilic mica. Our results demonstrate that the interaction with the gold surface triggers misfolding of the JD when it is in native-like configuration, while no structural modification is observed after the protein has undergone oligomerization. This raises the possibility that biological membranes would be unable to affect amyloid oligomeric structures and toxicity.


Subject(s)
Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Protein Folding , Protein Interaction Domains and Motifs , Proteins/chemistry , Absorption , Aluminum Silicates/chemistry , Molecular Dynamics Simulation , Protein Conformation , Protein Multimerization , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Properties
9.
Biochimie ; 94(4): 1026-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22234302

ABSTRACT

Ataxin-3 (AT3) triggers spinocerebellar ataxia type 3 when it carries a polyglutamine stretch expanded beyond a critical threshold. By Fourier transform infrared spectroscopy and atomic force microscopy we previously showed that a normal (AT3Q24) and an expanded (AT3Q55) variant were capable of evolving into oligomers and protofibrils at 37 °C, whereas only the expanded form generated irreversibly aggregated fibrils that also were associated with a network of side-chain glutamine hydrogen bonding [Natalello et al. (2011) PLoS One. 6:e18789]. We report here that AT3Q24, when gradually heated up to 85 °C, undergoes aggregation similar to that observed at 37 °C; in contrast, AT3Q55 only generates large, amorphous aggregates. We propose a possible interpretation of the mechanism by which temperature affects the outcome of fibrillogenesis.


Subject(s)
Amyloidogenic Proteins/chemistry , Nerve Tissue Proteins/chemistry , Nuclear Proteins/chemistry , Protein Multimerization , Repressor Proteins/chemistry , Amino Acid Substitution , Amyloidogenic Proteins/biosynthesis , Amyloidogenic Proteins/genetics , Ataxin-3 , Humans , Microscopy, Atomic Force , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Protein Binding , Protein Structure, Quaternary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Repressor Proteins/biosynthesis , Repressor Proteins/genetics , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...