Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473516

ABSTRACT

To contribute to the development of sustainable composites, this work investigates the effects of moisture on the key AE characteristics related to the damage mechanisms of a bio-based balsa wood core sandwich in 4-point bending tests, including cumulative counts, amplitude, peak frequency, and duration. Novel triple dog-bone balsa wood core sandwich specimens with different MC (moisture content) were studied by comparing microscopic observations and a proposed two-step clustering approach in AE analysis. Three MC states, i.e., dry, 50% MC, and 120% MC, are discussed. GFRP (glass-fiber-reinforced polymer) laminate skin damages were found to be predominant in most GFRP-balsa sandwich specimens, but balsa wood core damages play a more important role as MC increases. The degradation of the bending stiffness of the sandwich was proven to be faster in the first linear stage of the moisture absorption curve, while the decrease in bending strength was more pronounced at the MC saturation level. Finally, for all of the dry and wet sandwich specimens, peak frequency and duration were proven to be more helpful in identifying damages associated with the lighter bio-based balsa wood core, such as balsa core damages and skin/core debonding.

2.
Data Brief ; 53: 110199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38406256

ABSTRACT

The current dataset brings raw compression test information of a vegetable-based polyurethane foam (PUF) exposed to different temperatures over different periods of time. Such experimental dataset can provide researchers with important information in the application of numerical and data-driven simulations. Also, it saves money and time once the experimental part is already available. At total, 90 compression tests were done following the ASTM D1621-16 standard with pictures for digital image correlation (DIC) being simultaneously acquired. The 90 specimens were divided in nine different ageing conditions. The foam was considered transversely isotropic, thus, 10 specimens for each condition were divided in two groups, five specimens for direction 1 and five for direction 3, where direction 3 is the foam expansion direction. The 3D DIC results show longitudinal and transverse strains from virtual extensometers. The results are available in .TRA and .csv files for the tests and DIC outputs, respectively. Also, the dataset brings the pictures used for DIC in .TIF format. It also brings the dimensions of each specimen prior to the test in .txt format. These results provide information for the calculation of major mechanical properties that can be freely used in finite element models for different and creative ways to simulate the ageing process of a vegetable-based PUF.

3.
Front Chem ; 1: 43, 2013.
Article in English | MEDLINE | ID: mdl-24790971

ABSTRACT

Environmental concern has resulted in a renewed interest in bio-based materials. Among them, plant fibers are perceived as an environmentally friendly substitute to glass fibers for the reinforcement of composites, particularly in automotive engineering. Due to their wide availability, low cost, low density, high-specific mechanical properties, and eco-friendly image, they are increasingly being employed as reinforcements in polymer matrix composites. Indeed, their complex microstructure as a composite material makes plant fiber a really interesting and challenging subject to study. Research subjects about such fibers are abundant because there are always some issues to prevent their use at large scale (poor adhesion, variability, low thermal resistance, hydrophilic behavior). The choice of natural fibers rather than glass fibers as filler yields a change of the final properties of the composite. One of the most relevant differences between the two kinds of fiber is their response to humidity. Actually, glass fibers are considered as hydrophobic whereas plant fibers have a pronounced hydrophilic behavior. Composite materials are often submitted to variable climatic conditions during their lifetime, including unsteady hygroscopic conditions. However, in humid conditions, strong hydrophilic behavior of such reinforcing fibers leads to high level of moisture absorption in wet environments. This results in the structural modification of the fibers and an evolution of their mechanical properties together with the composites in which they are fitted in. Thereby, the understanding of these moisture absorption mechanisms as well as the influence of water on the final properties of these fibers and their composites is of great interest to get a better control of such new biomaterials. This is the topic of this review paper.

SELECTION OF CITATIONS
SEARCH DETAIL
...