Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 34(8): 11143-11167, 2020 08.
Article in English | MEDLINE | ID: mdl-32627872

ABSTRACT

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.5 mT, 10 min/week), with and without exercise, on systemic metabolism and gut microbiome in four groups of mice: (a) no intervention; (b) PEMF treatment; (c) exercise; (d) exercise and PEMF treatment. The combination of PEMFs and exercise for 6 weeks enhanced running performance and upregulated muscular and adipose Pgc-1α transcript levels, whereas exercise alone was incapable of elevating Pgc-1α levels. The gut microbiome Firmicutes/Bacteroidetes ratio decreased with exercise and PEMF exposure, alone or in combination, which has been associated in published studies with an increase in lean body mass. After 2 months, brief PEMF treatment alone increased Pgc-1α and mitohormetic gene expression and after >4 months PEMF treatment alone enhanced oxidative muscle expression, fatty acid oxidation, and reduced insulin levels. Hence, short-term PEMF treatment was sufficient to instigate PGC-1α-associated transcriptional cascades governing systemic mitohormetic adaptations, whereas longer-term PEMF treatment was capable of inducing related metabolic adaptations independently of exercise.


Subject(s)
Gastrointestinal Microbiome/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Adaptation, Physiological/physiology , Animals , Bacteroidetes/growth & development , Body Composition/physiology , Fatty Acids/metabolism , Female , Firmicutes/growth & development , Follow-Up Studies , Gene Expression/physiology , Insulin/metabolism , Magnetic Fields , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Transcription, Genetic/physiology , Transcriptional Activation/physiology
2.
FASEB J ; 33(11): 12853-12872, 2019 11.
Article in English | MEDLINE | ID: mdl-31518158

ABSTRACT

We show that both supplemental and ambient magnetic fields modulate myogenesis. A lone 10 min exposure of myoblasts to 1.5 mT amplitude supplemental pulsed magnetic fields (PEMFs) accentuated in vitro myogenesis by stimulating transient receptor potential (TRP)-C1-mediated calcium entry and downstream nuclear factor of activated T cells (NFAT)-transcriptional and P300/CBP-associated factor (PCAF)-epigenetic cascades, whereas depriving myoblasts of ambient magnetic fields slowed myogenesis, reduced TRPC1 expression, and silenced NFAT-transcriptional and PCAF-epigenetic cascades. The expression levels of peroxisome proliferator-activated receptor γ coactivator 1α, the master regulator of mitochondriogenesis, was also enhanced by brief PEMF exposure. Accordingly, mitochondriogenesis and respiratory capacity were both enhanced with PEMF exposure, paralleling TRPC1 expression and pharmacological sensitivity. Clustered regularly interspaced short palindromic repeats-Cas9 knockdown of TRPC1 precluded proliferative and mitochondrial responses to supplemental PEMFs, whereas small interfering RNA gene silencing of TRPM7 did not, coinciding with data that magnetoreception did not coincide with the expression or function of other TRP channels. The aminoglycoside antibiotics antagonized and down-regulated TRPC1 expression and, when applied concomitantly with PEMF exposure, attenuated PEMF-stimulated calcium entry, mitochondrial respiration, proliferation, differentiation, and epigenetic directive in myoblasts, elucidating why the developmental potential of magnetic fields may have previously escaped detection. Mitochondrial-based survival adaptations were also activated upon PEMF stimulation. Magnetism thus deploys an authentic myogenic directive that relies on an interplay between mitochondria and TRPC1 to reach fruition.-Yap, J. L. Y., Tai, Y. K., Fröhlich, J., Fong, C. H. H., Yin, J. N., Foo, Z. L., Ramanan, S., Beyer, C., Toh, S. J., Casarosa, M., Bharathy, N., Kala, M. P., Egli, M., Taneja, R., Lee, C. N., Franco-Obregón, A. Ambient and supplemental magnetic fields promote myogenesis via a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.


Subject(s)
Magnetic Fields , Mitochondria, Muscle/metabolism , Muscle Development , Myoblasts, Skeletal/metabolism , Signal Transduction , TRPC Cation Channels/metabolism , Animals , Cell Line , Mice , Mitochondria, Muscle/genetics , Myoblasts, Skeletal/cytology , TRPC Cation Channels/genetics
3.
Cell Physiol Biochem ; 37(2): 651-65, 2015.
Article in English | MEDLINE | ID: mdl-26344791

ABSTRACT

BACKGROUND: Clinical results of regenerative treatments for osteoarthritis are becoming increasingly significant. However, several questions remain UNANSWERED concerning mesenchymal stem cell (MSC) adhesion and incorporation into cartilage. METHODS: To this end, peripheral blood (PB) MSCs were chondrogenically induced and/or stimulated with pulsed electromagnetic fields (PEMFs) for a brief period of time just sufficient to prime differentiation. In an organ culture study, PKH26 labelled MSCs were added at two different cell densities (0.5 x106 vs 1.0 x106). In total, 180 explants of six horses (30 per horse) were divided into five groups: no lesion (i), lesion alone (ii), lesion with naïve MSCs (iii), lesion with chondrogenically-induced MSCs (iv) and lesion with chondrogenically-induced and PEMF-stimulated MSCs (v). Half of the explants were mechanically loaded and compared with the unloaded equivalents. Within each circumstance, six explants were histologically evaluated at different time points (day 1, 5 and 14). RESULTS: COMP expression was selectively increased by chondrogenic induction (p = 0.0488). PEMF stimulation (1mT for 10 minutes) further augmented COL II expression over induced values (p = 0.0405). On the other hand, MSC markers remained constant over time after induction, indicating a largely predifferentiated state. In the unloaded group, MSCs adhered to the surface in 92.6% of the explants and penetrated into 40.7% of the lesions. On the other hand, physiological loading significantly reduced surface adherence (1.9%) and lesion filling (3.7%) in all the different conditions (p < 0.0001). Remarkably, homogenous cell distribution was characteristic for chondrogenic induced MSCs (+/- PEMFs), whereas clump formation occurred in 39% of uninduced MSC treated cartilage explants. Finally, unloaded explants seeded with a moderately low density of MSCs exhibited greater lesion filling (p = 0.0022) and surface adherence (p = 0.0161) than explants seeded with higher densities of MSCs. In all cases, the overall amount of lesion filling decreased from day 5 to 14 (p = 0.0156). CONCLUSION: The present study demonstrates that primed chondrogenic induction of MSCs at a lower cell density without loading results in significantly enhanced and homogenous MSC adhesion and incorporation into equine cartilage.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells/cytology , Organ Culture Techniques/methods , Animals , Cartilage Oligomeric Matrix Protein/metabolism , Cell Adhesion , Cell Count , Cell Differentiation , Cells, Cultured , Collagen Type II/metabolism , Electromagnetic Fields , Horses
4.
FASEB J ; 29(11): 4726-37, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26207028

ABSTRACT

The developmental sensitivity of skeletal muscle to mechanical forces is unparalleled in other tissues. Calcium entry via reputedly mechanosensitive transient receptor potential (TRP) channel classes has been shown to play an essential role in both the early proliferative stage and subsequent differentiation of skeletal muscle myoblasts, particularly TRP canonical (TRPC) 1 and TRP vanilloid (TRPV) 2. Here we show that C2C12 murine myoblasts respond to fluid flow-induced shear stress with increments in cytosolic calcium that are largely initiated by the mechanosensitive opening of TRPV2 channels. Response to fluid flow was augmented by growth in low extracellular serum concentration (5 vs. 20% fetal bovine serum) by greater than 9-fold and at 18 h in culture, coincident with the greatest TRPV2 channel expression under identical conditions (P < 0.02). Fluid flow responses were also enhanced by substrate functionalization with laminin, rather than with fibronectin, agreeing with previous findings that the gating of TRPV2 is facilitated by laminin. Fluid flow-induced calcium increments were blocked by ruthenium red (27%) and SKF-96365 (38%), whereas they were unaltered by 2-aminoethoxydiphenyl borate, further corroborating that TRPV2 channels play a predominant role in fluid flow mechanosensitivity over that of TRPC1 and TRP melastatin (TRPM) 7.


Subject(s)
Calcium Channels/biosynthesis , Extracellular Matrix/metabolism , Ion Channel Gating , Mechanotransduction, Cellular , Myoblasts/metabolism , Stress, Physiological , TRPV Cation Channels/biosynthesis , Animals , Calcium/metabolism , Calcium Channels/genetics , Cattle , Cell Line , Fibronectins/metabolism , Gene Expression Regulation/drug effects , Imidazoles/pharmacology , Laminin/metabolism , Mice , Myoblasts/cytology , Ruthenium Red/pharmacology , Serum/metabolism , TRPC Cation Channels/biosynthesis , TRPM Cation Channels/biosynthesis , TRPV Cation Channels/genetics
5.
J Mater Chem B ; 2(4): 357-362, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-32261380

ABSTRACT

Magnetic microrobots have potential use in biomedical applications such as minimally invasive surgery, targeted diagnosis and therapy. Inspired by nature, artificial bacterial flagella (ABFs) are a form of microrobot powered by magnetic helical propulsion. For the promise of ABFs to be realized, issues of biocompatibility must be addressed and the materials used in their fabrication should be carefully considered. In this work, we fabricate the helical bodies of ABFs from a commercially available biocompatible photoresist, ORMOCOMP, by subsequently coating them with Fe for magnetic actuation. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays show that Fe-coated ORMOCOMP layers do not undermine the cell viability during 72 hours of incubation compared to control substrates. Cells exhibit normal morphology on ABF arrays and show good lamellipodial and filopodial interactions with the ABF surfaces. The swimming performance of Fe-coated ABFs is characterized using a three-pair Helmholtz coil arrangement. ABFs exhibit a maximum forward speed of 48.9 µm s-1 under a field of 9 mT at a frequency of 72 Hz. In summary, our Fe-coated ABFs exhibit little cytotoxicity and have potential for in vivo applications, especially those involving difficult to access regions within the human body.

SELECTION OF CITATIONS
SEARCH DETAIL
...