Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 16: 835717, 2022.
Article in English | MEDLINE | ID: mdl-35517576

ABSTRACT

Recognizing and sharing emotions are essential for species survival, but in some cases, living with a conspecific in distress condition may induce negative emotional states through empathy-like processes. Studies have reported that stressors promote psychiatric disorders in both, those who suffer directly and who witness these aversive episodes, principally whether social proximity is involved. However, the mechanisms underlying the harmful outcomes of emotional contagion need more studies, mainly in the drug addiction-related behaviors. Here, we investigated the relevance of familiarity and the effects of cohabitation with a partner submitted to chronic stress in the anxiety-like, locomotor sensitization, and consolation behaviors. Male Swiss mice were housed in pairs during different periods to test the establishment of familiarity and the stress-induced anxiety behavior in the elevated plus maze. Another cohort was housed with a conspecific subjected to repeated restraint stress (1 h/day) for 14 days. During chronic restraint the allogrooming was measured and after the stress period mice were tested in the open field for evaluation of anxiety and locomotor cross-sensitization induced by methamphetamine. We found that familiarity was established after 14 days of cohabitation and the anxiogenic behavior appeared after 14 days of stress. Repeated restraint stress also increased anxiety in the open field test and induced locomotor cross-sensitization in the stressed mice and their cagemates. Cagemates also exhibited an increase in the consolation behavior after stress sessions when compared to control mice. These results indicate that changes in drug abuse-related, consolation, and affective behaviors may be precipitated through emotional contagion in familiar conspecifics.

2.
Heliyon ; 8(2): e08989, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35243102

ABSTRACT

BACKGROUND: Cardiovascular inflammation and oxidative stress are determining factors in high blood pressure and arrhythmias. Indole-3-carbinol is a cruciferous-derived phytochemical with potential anti-inflammatory and antioxidant effects. However, its implications on the modulation of cardiovascular inflammatory-oxidative markers are unknown. OBJECTIVES: To establish the effects of indole-3-carbinol on the oxidative-inflammatory-proarrhythmic conditions associated with hypertension. MATERIALS: Histological, biochemical, molecular, and functional aspects were evaluated in 1) Culture of mouse BV-2 glial cells subjected to oxidative-inflammatory damage by lipopolysaccharides (100 ng/mL) in the presence or absence of 40 µM indole-3-carbinol (n = 5); 2) Male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats receiving indole-3-carbinol (2000 ppm/day, orally) during the first 8 weeks of life (n = 15); 3) Isolated rat hearts were submitted to 10 min regional ischemia and 10 min reperfusion. RESULTS: 1) lipopolysaccharides induced oxidative stress and increased inflammatory markers; indole-3-carbinol reversed both conditions (interleukin 6, tumor necrosis factor α, the activity of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide, inducible nitric oxide synthase, heat shock protein 70, all p < 0.01 vs lipopolysaccharides). 2) SHR rats showed histological, structural, and functional changes with increasing systolic blood pressure (154 ± 8 mmHg vs. 122 ± 7 mmHg in Wistar Kyoto rats, p < 0.01); Inflammatory-oxidative markers also increased, and nitric oxide and heat shock protein 70 decreased. Conversely, indole-3-carbinol reduced oxidative-inflammatory markers and systolic blood pressure (133 ± 8 mmHg, p < 0.01 vs. SHR). 3) indole-3-carbinol reduced reperfusion arrhythmias from 8/10 in SHR to 0/10 (p = 0.0007 by Fisher's exact test). CONCLUSIONS: Indole-3-carbinol reduces the inflammatory-oxidative-proarrhythmic process of hypertension. The nitric oxide and heat shock protein 70 are relevant mechanisms of indole-3-carbinol protective actions. Further studies with this pleiotropic phytochemical as a promising cardioprotective are guaranteed.

3.
J Pineal Res ; 65(4): e12513, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29851143

ABSTRACT

Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Melatonin/therapeutic use , Receptor, Angiotensin, Type 1/metabolism , Receptors, Calcitriol/metabolism , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/metabolism , Actins/metabolism , Animals , Apoptosis/drug effects , Fibrosis/metabolism , HSP70 Heat-Shock Proteins/genetics , In Situ Nick-End Labeling , In Vitro Techniques , Kidney/metabolism , Male , Microscopy, Electron , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/metabolism , NADPH Oxidases/metabolism , Rats , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/genetics , Receptors, Calcitriol/genetics
4.
BMC Nephrol ; 17: 34, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27009470

ABSTRACT

BACKGROUND: Hypertension is a public health problem with mostly unknown causes, and where strong hereditary genetic alterations have not been fully elucidated. However, the use of experimental models has provided valuable information. Recent evidences suggest that alterations in key nephrogenic factors, such as Wilms' tumor 1 transcription factor (WT-1), could contribute to the development of hypertension. The aim of this paper is to evaluate the expression of WT-1 and related genes in the nephrogenic process in connection with the development of hypertension as well as the corresponding anatomical and functional correlation. METHODS: Male spontaneously hypertensive and control rats were evaluated weekly from birth until week 8 of life. Their blood pressure was taken weekly using the tail-cuff blood pressure system. Weekly, 5 rats per group were sacrificed with a lethal injection of pentobarbital, and their kidneys were removed, decapsulated and weighed. The serum was collected for measuring biochemical parameters. The results were assessed using one-way analysis of variance for comparisons between groups. RESULTS: The relationship between renal weight/total body weights was established, without significantly different values. These data were compared with apoptosis, fibrosis, number and size of the glomeruli. The elevation of systolic blood pressure was significant since week 6. Biochemical values differed slightly. Histology showed a slight increase in deposits of collagen fibers since week 4. Additionally, in kidney cortices, the expression of WT-1, heat shock protein 70 (Hsp70) and vitamin D receptors (VDR) decreased since week 4. Finally, we demonstrated ultrastructural damage to mitochondria since week 4. CONCLUSIONS: Our results would suggest an unprecedented link, possibly a regulatory mechanism, between WT-1 on nephrogenic alteration processes and their relationship with hypertension. Moreover, and previous to the increase in blood pressure, we demonstrated low expressions of WT-1, VDR and Hsp70 in kidneys from neonatal SHRs. If so, this may suggest that deregulation in the expression of WT-1 and its impact on nephrogenesis induction could be crucial in understanding the development and maintenance of hypertension.


Subject(s)
Hypertension/metabolism , Kidney/metabolism , Mitochondria/ultrastructure , WT1 Proteins/metabolism , Animals , Animals, Newborn , Apoptosis , Blood Pressure , Body Weight , Fibrosis , HSP70 Heat-Shock Proteins/metabolism , Hypertension/pathology , Immunohistochemistry , In Situ Nick-End Labeling , Kidney/pathology , Kidney Cortex/metabolism , Male , Microscopy, Confocal , Microscopy, Electron , Microscopy, Fluorescence , Organ Size , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Calcitriol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...