Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37299918

ABSTRACT

Bridges are vital components of transport infrastructures, and therefore, it is of utmost importance that they operate safely and reliably. This paper proposes and tests a methodology for detecting and localizing damage in bridges under both traffic and environmental variability considering non-stationary vehicle-bridge interaction. In detail, the current study presents an approach to temperature removal in the case of forced vibrations in the bridge using principal component analysis, with detection and localization of damage using an unsupervised machine learning algorithm. Due to the difficulty in obtaining real data on undamaged and later damaged bridges that are simultaneously influenced by traffic and temperature changes, the proposed method is validated using a numerical bridge benchmark. The vertical acceleration response is derived from a time-history analysis with a moving load under different ambient temperatures. The results show how machine learning algorithms applied to bridge damage detection appear to be a promising technique to efficiently solve the problem's complexity when both operational and environmental variability are included in the recorded data. However, the example application still shows some limitations, such as the use of a numerical bridge and not a real bridge due to the lack of vibration data under health and damage conditions, and with varying temperatures; the simple modeling of the vehicle as a moving load; and the crossing of only one vehicle present in the bridge. This will be considered in future studies.

2.
Materials (Basel) ; 16(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110101

ABSTRACT

A hybrid girder bridge adopts a steel segment at the mid-span of the main span of a continuous concrete girder bridge. The critical point of the hybrid solution is the transition zone, connecting the steel and concrete segments of the beam. Although many girder tests revealing the structural behavior of hybrid girders have been conducted by previous studies, few specimens took the full section of a steel-concrete joint due to the large size of prototype hybrid bridges. In this study, a static load test on a composite segment to bridge the joint between the concrete and steel parts of a hybrid bridge with full section was conducted. A finite element model replicating the tested specimen results was established through Abaqus, while parametric studies were also conducted. The test and numerical results revealed that the concrete filling in the composite solution prevented the steel flange from extensive buckling, which significantly improved the load-carrying capacity of the steel-concrete joint. Meanwhile, strengthening the interaction between the steel and concrete helps to prevent the interlayer slip and simultaneously contributes to a higher flexural stiffness. These results are an important basis for establishing a rational design scheme for the steel-concrete joint of hybrid girder bridges.

3.
Sensors (Basel) ; 23(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050841

ABSTRACT

Distributed fiber optic sensors (DFOS) can detect structural cracks and structural deformation with high accuracy and wide measurement range. This study monitors the segmental prestressed bent cap, assembled with a large key dry joint, based on optical fiber technology, and it allows the comparison of its damaging process with that of a monolithic cast in place counterpart. The obtained results, comprising cross-section strain distributions, longitudinal strain profiles, neutral axis location, crack pattern, and the damage process, show that the DFOS technology can be successfully used to analyze the complex working stress state of the segmental beam with shear key joints, both in the elastic range and at the ultimate load, and to successfully identify the changing characteristics of the stress state of the segmental capping beam model when elastic beam theory no longer applies. The DFOS data confirm that the shear key joint, as the weak point of the segmental cap beam, results in the high stress concentration area, and the damage rate is higher than that of the cast-in-place beam. The accurate monitoring by the DFOS allows for the realization that the damage occurs at the premature formation of a concentrated compression zone on the upper part of the shear key.

4.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807792

ABSTRACT

The present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.63 mm). This review article intends to introduce, inform and advise the readers on various DOFS deployment methodologies for the assessment of the residual ability of a structure to continue serving its intended purpose. By collecting in a single place these recent efforts, advancements and findings, the authors intend to contribute to the goal of collective growth towards an efficient SHM. The current work is structured in a manner that allows for the single consultation of any specific DOFS application field, i.e., laboratory experimentation, the built environment (bridges, buildings, roads, etc.), geotechnical constructions, tunnels, pipelines and wind turbines. Beforehand, a brief section was constructed around the recent progress on the study of the strain transfer mechanisms occurring in the multi-layered sensing system inherent to any DOFS deployment (different kinds of fiber claddings, coatings and bonding adhesives). Finally, a section is also dedicated to ideas and concepts for those novel DOFS applications which may very well represent the future of SHM.

5.
Sensors (Basel) ; 21(9)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919329

ABSTRACT

The inverse problem of structural system identification is prone to ill-conditioning issues; thus, uniqueness and stability cannot be guaranteed. This issue tends to amplify the error propagation of both the epistemic and aleatory uncertainties, where aleatory uncertainty is related to the accuracy and the quality of sensors. The analysis of uncertainty quantification (UQ) is necessary to assess the effect of uncertainties on the estimated parameters. A literature review is conducted in this paper to check the state of existing approaches for efficient UQ in the parameter identification field. It is identified that the proposed dynamic constrained observability method (COM) can make up for some of the shortcomings of existing methods. After that, the COM is used to analyze a real bridge. The result is compared with the existing method, demonstrating its applicability and correct performance by a reinforced concrete beam. In addition, during the bridge system identification by COM, it is found that the best measurement set in terms of the range will depend on whether the epistemic uncertainty involved or not. It is concluded that, because the epistemic uncertainty will be removed as the knowledge of the structure increases, the optimum sensor placement should be achieved considering not only the accuracy of sensors, but also the unknown structural part.

6.
Sensors (Basel) ; 20(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066138

ABSTRACT

Distributed optical fiber sensors (DOFS) are modern-day cutting-edge monitoring tools that are quickly acquiring relevance in structural health monitoring engineering. Their most ambitious use is embedded inside plain or reinforced concrete (RC) structures with the scope of comprehending their inner-workings and the functioning of the concrete-reinforcement interaction. Yet, multiple studies have shown that the bonding technique with which the DOFS are bonded to the reinforcement bars has a significant role on the quality of the extracted strain data. Whilst this influence has been studied for externally bonded DOFS, it has not been done for embedded ones. The present article is set on performing such study by monitoring the strain measurement quality as sampled by DOFS bonded to multiple rebars with different techniques and adhesives. These instrumented rebars are used to produce differently sized RC ties later tested in tension. The discussion of the test outputs highlights the quasi-optimal performance of a DOFS/rebar bonding technique consisting of incising a groove in the rebar, positioning the DOFS inside it, bonding it with cyanoacrylate and later adding a protective layer of silicone. The resulting data is mostly noise-free and anomalies-free, yet still presents a newly diagnosed hitch that needs addressing in future research.

7.
Sensors (Basel) ; 18(4)2018 Mar 26.
Article in English | MEDLINE | ID: mdl-29587449

ABSTRACT

When using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures. Rayleigh Optical Frequency Domain Reflectometry (OFDR) was used as the most suitable technique for crack detection in reinforced concrete elements. To verify the reliability and accuracy of the DOFS measurements, additional strain gauges were also installed at three locations along the rebar. The results show the feasibility of using a thin coated polyimide DOFS directly bonded on the reinforcing bar without the need of indention or mechanization. A proposal for a Spectral Shift Quality (SSQ) threshold is also obtained and proposed for future works when using polyimide-coated DOFS bonded to rebars with cyanoacrylate adhesive.

8.
Sensors (Basel) ; 16(5)2016 May 23.
Article in English | MEDLINE | ID: mdl-27223289

ABSTRACT

The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...