Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 50(16): 5465-5472, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908974

ABSTRACT

Electron-rich, late transition metals are known to act as hydrogen-bonding (HBd) acceptors. In this regard, Pt(ii) centres in square-planar environments are particularly efficient. It is however puzzling that no convincing experimental evidence is currently available for the isoelectronic neighbour Au(iii) being involved in HBd interactions. We report now on the synthesis and characterisation of two series of isoleptic and isoelectronic (d8) compounds [(CF3)3Pt(L)]- and (CF3)3Au(L), where the L ligands are based on the quinoline frame and have been selected to favour HBd with the metal centre. Strong HBd interactions were actually found in the Pt(ii) compounds, based on structural and spectroscopic evidence, and they were further confirmed by theoretical calculations. In contrast, no evidence was obtained in the Au(iii) case. In order to find the reason underlying this general disparity, we undertook a detailed theoretical analysis of the model systems [(CF3)3Pt(py)]- and (CF3)3Au(py). This study revealed that the filled dz2 orbital is the HOMO in the case of Pt(ii), but is buried in the lower energy levels in the case of Au(iii). The sharply different electronic configurations involve ligand-field inversion on going from Pt to the next element Au. This is not a gradual but an abrupt change, which invalidates Au(iii) as a HBd-acceptor wherever ligand-field inversion occurs.

2.
Dalton Trans ; 47(47): 16846-16849, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30468447

ABSTRACT

The monohydration of SO2 has been achieved in solution mediated by a platinum-aquo complex. Benzamidate ligands play a key role along the process, acting as versatile proton shuttles. Finally, the platinum center allows the stabilization of benzimidic acid and a hydrogensulphite anion, the disfavored tautomers of benzamide and sulphonate, respectively.

3.
Angew Chem Int Ed Engl ; 57(22): 6517-6521, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29570928

ABSTRACT

The trans isomer of the organogold(III) difluoride complex [PPh4 ][(CF3 )2 AuF2 ] has been obtained in a stereoselective way and in excellent yield by reaction of [PPh4 ][CF3 AuCF3 ] with XeF2 under mild conditions. The compound is both thermally stable and reactive. Thus, the fluoride ligands are stereospecifically replaced by any heavier halide or by cyanide, the cyanide affording [PPh4 ][trans-(CF3 )2 Au(CN)2 ]. The organogold fluoride complexes [CF3 AuFx ]- (x=1, 2, 3) have been experimentally detected to arise upon collision-induced dissociation of the [trans-(CF3 )2 AuF2 ]- anion in the gas phase. Their structures have been calculated by DFT methods. In the isomeric forms identified for the open-shell species [CF3 AuF2 ]- , the spin density residing on the metal center is found to strongly depend on the precise stereochemistry. Based on crystallographic evidence, it is concluded that Auiii and Agiii have similar covalent radii, at least in their most common square-planar geometry.

4.
Chemistry ; 24(7): 1514-1517, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29271511

ABSTRACT

The mononuclear gold(II) halide complexes [AuCl3 ]- and [AuBr3 ]- are formed in the gas phase by collision-induced homolytic splitting of the only Au-C bond in the monoalkylgold(III) precursors [CF3 AuX3 ]- . The geometries of the whole series of [AuX3 ]- complexes (X=F, Cl, Br, I) have been calculated by DFT methods. It has also been found that the neutral AuX2 molecules behave as unsaturated species, showing significant affinity for an additional X- ligand. Moreover, in the open-shell [AuX3 ]- anions, homolytic splitting of one of the Au-X bonds and formation of the lower-valent [AuX2 ]- anions is favored over non-reducing halide dissociation. They should therefore be prone to disproportionation.

5.
Chemistry ; 23(59): 14918-14930, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28800187

ABSTRACT

The Lewis acidity of perfluorinated trimethylgold (CF3 )3 Au was assessed by theoretical and experimental methods. It was found that the (CF3 )3 Au unit is much more acidic than its nonfluorinated analogue (CH3 )3 Au, and probably sets the upper limit of the acidity scale for neutral organogold(III) species R3 Au. The significant acidity increase on fluorination is in line with the CF3 group being more electron-withdrawing than CH3 . The solvate (CF3 )3 Au⋅OEt2 (1) is presented as a convenient synthon of the unsaturated, 14-electron species (CF3 )3 Au. Thus, the weakly coordinated ether molecule in 1 is readily replaced by a variety of neutral ligands (L) to afford a wide range of (CF3 )3 Au⋅L compounds, which were isolated and characterized. Most of these mononuclear compounds exhibit marked thermal stability. This enhanced stabilization can be rationalized in terms of substantially stronger [Au]-L interactions with the (CF3 )3 Au unit. An affinity scale of this single-site, highly acidic organogold(III) fragment was calculated by DFT methods and experimentally mapped for various neutral monodentate ligands. The high-energy profile calculated for the fluorotropic [Au]-CF3 ⇌F-[Au]←CF2 process makes this potential decomposition path unfavorable and adds to the general stabilization of the fragment.

6.
Chemistry ; 23(28): 6919-6929, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28317201

ABSTRACT

The homoleptic compound [PPh4 ][CF3 AuCF3 ] cleanly undergoes photoinduced oxidative addition of CF3 I to afford the organogold(III) derivative [PPh4 ][(CF3 )3 AuI] in good yield and under mild conditions. This compound provides a convenient entry to the chemistry of the perfluorinated (CF3 )3 Au fragment, the properties of which were analyzed with the aid of DFT methods and compared with those of the homologous non-fluorinated (CH3 )3 Au moiety. It was found that reductive elimination of CX3 -CX3 in the former (X=F) requires a much higher energy barrier than in the latter (X=H) and is therefore considerably less favored. This can be considered as one of the main features underlying the significantly higher stability associated to the (CF3 )3 Au fragment and its derivatives. This unsaturated, 14-electron species can be stabilized by coordination of any of the halide ligands, including fluoride. In fact, the whole series of anionic [PPh4 ][(CF3 )3 AuX] complexes (X=F, Cl, Br, I, CN) has now been isolated and conveniently characterized. Evidence for intermolecular decomposition pathways upon thermolysis in the condensed phase is presented.

7.
Chemistry ; 23(7): 1512-1515, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-27933670

ABSTRACT

The anionic trifluoromethylgold(I) derivatives [CF3 AuX]- , which have been prepared and isolated as their [PPh4 ]+ salts in good yield, undergo thermally induced difluorocarbene extrusion in the gas phase, giving rise to the mixed gold(I) fluorohalide complexes [F-Au-X]- (X=Cl, Br, I). These triatomic species have been detected by tandem mass spectrometry (MS2) experiments and their properties have been analyzed by DFT methods. The CF2 extrusion mechanism from the Au-CF3 moiety serves as a model for the CF2 insertion into the Au-F bond, since both reactivity channels are connected by the microreversibility principle.

9.
Dalton Trans ; 44(15): 6936-43, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25781389

ABSTRACT

The platinum(ii) half-lantern dinuclear complexes [{Pt(bzq)(µ-C7H4NS2-κN,S)}2] () and [{Pt(bzq)(µ-C7H4NOS-κN,S)}2] () [bzq = benzo[h]quinolinate, C7H4NS2 = 2-mercaptobenzothiazolate, C7H4NOS = 2-mercaptobenzoxazolate] in solution of DMSO-H2O undergo a dramatic color change from yellowish-orange to purple and turn-off phosphorescence in the presence of a small amount of Hg(2+), being discernible by the naked-eye and by spectroscopic methods. Other metal ions as Ag(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+) and Tl(+) were tested and, even in a big excess, showed no interference in the selective detection of Hg(2+) in water. Job's plot analysis indicated a 1 : 1 stoichiometry in the complexation mode of Hg(2+) by /. The phosphorescence quenching attributed to the formation of [/ : Hg(2+)] complexes showed binding constants of K = 1.13 × 10(5) M(-1) () and K = 1.99 × 10(4) M(-1) (). The limit of detection has been also evaluated. In addition, dried paper test strips impregnated in DMSO solutions of and can detect concentration of Hg(2+) in water as low as 1 × 10(-5) M for and 5 × 10(-5) M for , making these complexes good candidates to be used as real-time Hg(2+) detectors. The nature of the interaction of the Pt2 half-lantern complex with the Hg(2+) cation, has been investigated by theoretical calculations.


Subject(s)
Coordination Complexes/chemistry , Mercury/analysis , Platinum/chemistry , Water Pollutants, Chemical/analysis , Colorimetry , Dimethyl Sulfoxide/chemistry , Luminescence , Mercury/chemistry , Spectrophotometry, Ultraviolet , Water Pollutants, Chemical/chemistry
10.
Chem Asian J ; 7(12): 2813-23, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22997177

ABSTRACT

The neutral compounds [Pt(bzq)(CN)(CNR)] (R = tBu (1), Xyl (2), 2-Np (3); bzq = benzoquinolate, Xyl = 2,6-dimethylphenyl, 2-Np = 2-napthyl) were isolated as the pure isomers with a trans-C(bzq),CNR configuration, as confirmed by (13)C{(1)H} NMR spectroscopy in the isotopically marked [Pt(bzq)((13)CN)(CNR)] (R = tBu (1'), Xyl (2'), 2-Np (3')) derivatives (δ(13)C(CN) ≈ 110 ppm; (1) J(Pt,(13)C) ≈ 1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] (4) with a trans-N(bzq),CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans-N(bzq),CNR) using Sonogashira conditions. X-ray diffraction studies reveal that while 1 adopts a columnar-stacked chain structure with Pt-Pt distances of 3.371(1) Šand significant π⋅⋅⋅π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt⋅⋅⋅Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq⋅⋅⋅Xyl and bzq⋅⋅⋅C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (ϕ = 42.1% 1, 57.6% 2). Luminescence properties in the solid state at 77 K and concentration-dependent emission studies in CH(2)Cl(2) at 298 K and at 77 K are also reported for 1-4.

11.
Dalton Trans ; 40(12): 2898-912, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21311801

ABSTRACT

The mononuclear complexes [Pt(bzq)(S^S)] [S^S = pyrrolidinedithiocarbamate (pdtc 1), dimethyldithiocarbamate (dmdtc 2)] were prepared by reaction of [Pt(bzq)(NCMe)(2)]ClO(4) with an equimolecular amount of [NH(4)(pdtc)] and [Na(dmdtc)·2H(2)O] respectively in MeOH. Reactions of 1 and 2 with AgClO(4) in 1 : 1 and 2 : 1 molar ratios rendered the heteropolinuclear compounds [{Pt(bzq)(S^S)Ag}(2)](ClO(4))(2) (S^S = pdtc 3, dmdtc 4) and [{Pt(bzq)(S^S)}(2)Ag](ClO(4)) (S^S = pdtc 5, dmdtc 6) respectively. The X-ray studies on single crystals of 3 and 4 showed that both consist of tetranuclear [Pt(2)Ag(2)] clusters with the Pt-Ag and the Ag-Ag distances in the range of those corresponding to Pt-Ag dative bonds and argentophilic interactions. In 3 the tetranuclear [Pt(2)Ag(2)] clusters are connected into infinite polymeric chains by Pt···Pt metallophilic interactions (Pt···Pt = 3.1890(7) Å). The X-ray study on a single crystal of 5 showed that it is a polymer based on trinuclear [Pt(2)Ag] clusters containing two unsupported Pt-Ag dative bonds and connected by Ag-S bonds in such a way that the "Pt-Ag-S-Pt-Ag-S" atoms draw a zigzag polymeric chain. TD-DFT calculations carried out for 1 indicate that the lowest energy absorption band in CH(2)Cl(2) can be described as a mixture of (1)MLCT, (1)IL and (1)L'LCT transitions. Powdered samples of 1 at 298 K and 77 K show a green-yellow emission band coming mainly from a (3)LC excited state. However complex 2 shows "luminescence thermochromism": the colour of its luminescence changes from green-yellow at 77 K to orange-red at 298 K. The emission of the Pt-Ag clusters, 3-6, in the solid state, are due to excimeric (3)ππ and/or (3)MMLCT (dσ* →π*) low-lying excited states, indicating that the presence of silver in the clusters makes the "Pt(bzq)(S^S)" fragments interact to a large extent through Pt···Pt and/or π-π interactions. Solid 3 is a highly selective vapochromic compound towards acetonitrile although this behaviour is not fully reversible.

12.
Inorg Chem ; 47(19): 8767-75, 2008 Oct 06.
Article in English | MEDLINE | ID: mdl-18767797

ABSTRACT

The bidentate N-donor ligands 2-aminopyridine (2-ampy), 7-azaindolate (aza) and 1,8-naphthyridine (napy) have been used to study the steric effect of pentafluorophenyl groups in the synthesis of binuclear platinum(II) complexes. The 2-ampy and aza ligands bridge two "Pt(C 6F 5) 2" fragments with Pt...Pt distances of 4.1 and 3.4 A, respectively (complexes 1 and 3). Under the same reaction conditions the napy ligand shows chelating behavior and makes the mononuclear complex ( A) highly reactive because of its strained coordination. One of the Pt-N bonds of the chelating complex is broken on reaction with HX {X = Cl ( 4), Br ( 5)} because of protonation while the anion X (-) occupies a created vacant site. The resulting mononuclear complex eliminates C 6F 5H when refluxed, and a binuclear complex ( 6) with two napy ligands bridging two "Pt(C 6F 5)Cl" fragments is obtained. The reaction of A with HPPh 2 affords a mononuclear complex ( 7) analogous to complexes 5 and 6, but reflux gives a binuclear complex ( 8) with the two napy ligands terminally bound and the PPh 2 groups bridging the "Pt(C 6F 5)napy" moieties. The reaction of A with HCCPh gives a binuclear complex; moreover, the final product does not depend on the ratio of complex A to HCCPh. Complexes 1, 4, 6, 9 have been structurally characterized by X-ray diffraction.

13.
Inorg Chem ; 44(25): 9444-52, 2005 Dec 12.
Article in English | MEDLINE | ID: mdl-16323931

ABSTRACT

The preparation of the [NBu4][Pt(C6F5)3L] complexes (L=triazene, formamidine, 2-aminopyridine,) have been carried out. These ligands contain a hydrogen atom, with more or less acidic character, in a position suitable for establishing an intramolecular hydrogen bonding interaction with the metal center. This interaction has been detected in solution for; its 1H NMR spectrum shows that the resonance assignable to this hydrogen has platinum satellites. For, this coupling is not observed, and the interaction, if it exists, has to be weaker because of the less acidic character of the hydrogen atom. The 2-aminopyridine ligand is more flexible than the triazene or formamidine, and also in this case, no evidence of the interaction in solution is obtained. Nevertheless, if another potential proton acceptor is present, such as ClO4- in [NBu4]2[Pt(C6F5)3(C5H6N2)](ClO4), a conventional N-H...O-Cl hydrogen bond is formed. The crystal structures of complexes have been determined by X-ray diffraction.


Subject(s)
Amidines/chemistry , Aminopyridines/chemistry , Hydrogen/chemistry , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/chemical synthesis , Platinum/chemistry , Triazenes/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Structure , Solutions/chemistry
14.
Dalton Trans ; (17): 2733-40, 2004 Sep 07.
Article in English | MEDLINE | ID: mdl-15514759

ABSTRACT

Six pentafluorophenylplatinum(II) complexes containing proton acceptor atoms (F) and pyridine-like aromatic ligands able to act as proton donors have been synthesized and characterized, with emphasis on the factors that mediate their supramolecular aggregation in the solid state--hydrogen bonds and pi-pi interactions. The crystal structure analyses of the mononuclear complexes cis-[Pt(C6F5)2(napy)](1), cis-[Pt(C6F5)2(CH2napy)](3), cis-[Pt(C6F5)2(2-ammpy)](5), and cis-[Pt(C6F5)2(2-bipym)](6) reveal the influence of D-HPt and D-HF (D=C, N) hydrogen bonding on the organization of molecules into stacks, which can be further interconnected to generate channels. The prevalence of hydrogen bonding over pi-pi interactions between aromatic rings in establishing the nature of the observed supramolecular aggregation is demonstrated.

15.
Inorg Chem ; 38(22): 5034-5040, 1999 Nov 01.
Article in English | MEDLINE | ID: mdl-11671247

ABSTRACT

The electrolytic behavior of the dinuclear complexes [NBu(4)](2)[MM'(&mgr;-PPh(2))(2)(C(6)F(5))(4)] (M = M' = Pt (1), Pd (1a); M = Pt, M' = Pd (1b)) has been studied, showing electrochemically irreversible oxidation and related reduction processes. The chemical oxidation of the binuclear compound for M = M' = Pt, results in the formation of the binuclear Pt(III) compound [Pt(2)(&mgr;-PPh(2))(2)(C(6)F(5))(4)]. The crystal structure analysis of both complexes has been carried out, showing very similar structures with similar Pt-C and Pt-P distances and analogous skeletons. However the Pt-Pt distances are very different, 3.621(1) Å for the Pt(II) compound and 2.7245(7) Å for the Pt(III) derivative (as are the parameters geometrically related to this Pt-Pt distance), suggesting that, in the Pt(III) compound, there is a strong Pt-Pt bond. Results of DFT calculations on [Pt(2)(&mgr;-PH(2))(2)(C(6)F(5))(4)](n)()(-) (n = 2, 0) agree very well with the crystallographic data and indicate that, in the Pt(III) compound, there is approximately a single sigma bond between the metal atoms.

16.
Inorg Chem ; 35(25): 7345-7349, 1996 Dec 04.
Article in English | MEDLINE | ID: mdl-11666927

ABSTRACT

By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) Å, b = 16.677(3) Å, c = 27.154(5) Å, beta = 98.58(3) degrees, V = 5383.2(16) Å(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) Å] seems to be a consequence of the bridging ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...