Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37445109

ABSTRACT

INTRODUCTION: Today's dentistry frequently employs bonded partial restorations, which are usually fabricated in ceramic materials. In the last decade, hybrid materials have emerged that attempt to combine the properties of composites and ceramics. OBJECTIVES: To evaluate in vitro, by means of a microtensile test, the bond strength between CAD-CAM restorative materials and the cement recommended by their manufacturer. MATERIAL AND METHOD: From blocks of CAD-CAM restorative material bonded to composite blocks (Filtek 500®), beams with a bonding area of approximately 1 mm2 were made and divided into four groups: EMAX (IPS e.max CAD® lithium disilicate), VE (VITA Enamic® polymer-infiltrated ceramic matrix), LUA (Lava Ultimate® nano-ceramic resin with sandblasting protocol) and LUS (Lava Ultimate® nano-ceramic resin with silica coating protocol). In each group, perimeter (external) or central (internal) beams were differentiated according to the position in the block. The samples were tested on the LMT 100® microtensile machine. Using optical microscopy, the fractures were categorized as adhesive or cohesive (of the restorative material or composite), and the data were analysed with parametric tests (ANOVA). RESULTS: The LUS group had the highest results (42 ± 20 MPa), followed by the LUA group (38 ± 18 MPa). EMAX had a mean of 34 ± 16 MPa, and VE was the lowest in this study (30 ± 17 MPa). In all groups, the central beams performed better than the perimeter beams. Both EMAX and VE had the most adhesive fractures, while LUA and LUS had a predominance of cohesive fractures. CONCLUSIONS: Lava Ultimate® nanoceramic resin with the silica coating protocol obtains the best bond strength values.

2.
Medicina (Kaunas) ; 56(3)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197479

ABSTRACT

Background and Objectives: To evaluate in vitro the fracture resistance and fracture type of computer-aided design and computer-aided manufacturing (CAD-CAM) materials. Materials and Methods: Discs were fabricated (10 × 1.5 mm) from four test groups (N = 80; N = 20 per group): lithium disilicate (LDS) group (control group): IPS e.max CAD®; zirconium-reinforced lithium silicate (ZRLS) group: VITA SUPRINITY®; polymer-infiltrated ceramic networks (PICN) group: VITA ENAMIC®; resin nanoceramics (RNC) group: LAVA™ ULTIMATE. Each disc was cemented (following the manufacturers' instructions) onto previously prepared molar dentin. Samples underwent until fracture using a Shimadzu® test machine. The stress suffered by each material was calculated with the Hertzian model, and its behavior was analyzed using the Weibull modulus. Data were analyzed with ANOVA parametric statistical tests. Results: The LDS group obtained higher fracture resistance (4588.6 MPa), followed by the ZRLS group (4476.3 MPa) and PICN group (4014.2 MPa) without statistically significant differences (p < 0.05). Hybrid materials presented lower strength than ceramic materials, the RNC group obtaining the lowest values (3110 MPa) with significant difference (p < 0.001). Groups PICN and RNC showed greater occlusal wear on the restoration surface prior to star-shaped fracture on the surface, while other materials presented radial fracture patterns. Conclusion: The strength of CAD-CAM materials depended on their composition, lithium disilicate being stronger than hybrid materials.


Subject(s)
Computer-Aided Design/instrumentation , Dental Restoration, Permanent/methods , Materials Testing/methods , Case-Control Studies , Ceramics/therapeutic use , Dental Materials/therapeutic use , Dental Porcelain , Humans , Nanostructures/therapeutic use , Tensile Strength , Zirconium
3.
Article in Es | IBECS | ID: ibc-10779

ABSTRACT

Cuando hablamos de porcelana, hablamos de la física y química del silicio y de los tres elementos derivados de él que más importancia tienen dentro de la porcelana: el cuarzo o sílice, los feldespatos y el caolín. Las porcelanas dentales están formadas básicamente por un vidrio en el que se encuentran partículas más o menos grandes de minerales cristalizados; es decir, una fase vítrea (feldespatos) de estructura atómica no periódica y por lo tanto amorfa que contiene una fase ordenada periódica y por lo tanto cristalina (sílice). El intento de clasificar las porcelanas tiene como utilidad facilitar la comunicación entre los distintos profesionales, así como el poder situar cada porcelana o nuevo producto presentado en un compartimiento donde las características tales como temperatura de sinterización, composición y manejo sean com-partidas por aquéllas que compongan el mismo grupo (AU)


Subject(s)
Dental Porcelain/classification , Quartz/chemistry , Kaolin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...