Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biophys Rev ; 16(2): 189-218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737201

ABSTRACT

The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.

2.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142522

ABSTRACT

Outdoor air pollution is a mixture of multiple atmospheric pollutants, among which nitrogen oxide (NOx) stands out due to its association with several diseases. NOx reactivity can conduct to DNA damage as severe as interstrand crosslinks (ICL) formation, that in turn is able to block DNA replication and transcription. Experimental studies have suggested that the ICL formation due to NOx is realized through a diazonium intermediate (DI). In this work, we have modeled the DI structure, including a DNA double-strand composed of two base pairs GC/CG, being diazotized as one of the guanine nucleotides. The structural stability of DNA with DI lesion was essayed through 500 ns molecular dynamics simulations. It was found that the DNA structure of the oligonucleotide is stable when the DI is present since the loss of a Guanine-Cytosine hydrogen bond is replaced by the presence of two cation-π interactions. Additionally, we have studied the mechanism of formation of a crosslink between the two guanine nucleobases from the modeled DI by carrying out DFT calculations at the M06-L/DNP+ level of theory. Our results show that the mechanism is thermodynamically favored by a strong stabilization of the ICL product, and the process is kinetically viable since its limiting stage is accessible.


Subject(s)
Environmental Pollutants , Cytosine/chemistry , DNA/chemistry , DNA Damage , Guanine/chemistry , Guanine Nucleotides , Nitrogen Oxides , Oligonucleotides
3.
Chem Sci ; 11(12): 3332-3344, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-34122841

ABSTRACT

α-Synuclein (αS) aggregation is a hallmark in several neurodegenerative diseases. Among them, Parkinson's disease is highlighted, characterized by the intraneuronal deposition of Lewy bodies (LBs) which causes the loss of dopaminergic neurons. αS is the main component of LBs and in them, it usually contains post-translational modifications. One of them is the formation of advanced glycation end-products (mainly CEL and MOLD) arising from its reaction with methylglyoxal. Despite its biological relevance, there are no data available proving the effect of glycation on the conformation of αS, nor on its aggregation mechanism. This has been hampered by the formation of a heterogeneous set of compounds that precluded conformational studies. To overcome this issue, we have here produced αS homogeneously glycated with CEL. Its use, together with different biophysical techniques and molecular dynamics simulations, allowed us to study for the first time the effect of glycation on the conformation of a protein. CEL extended the conformation of the N-terminal domain as a result of the loss of transient N-/C-terminal long-range contacts while increasing the heterogeneity of the conformational population. CEL also inhibited the αS aggregation, but it was not able to disassemble preexisting amyloid fibrils, thus proving that CEL found on LBs must be formed in a later event after aggregation.

4.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480509

ABSTRACT

Pyridoxamine, one of the natural forms of vitamin B6, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the oxidative reactions taking place in the advanced stages of the protein glycation cascade. It also reacts with reactive carbonyl compounds generated as byproducts of protein glycation, thereby preventing further protein damage. We applied Density Functional Theory to study the primary antioxidant activity of pyridoxamine towards three oxygen-centered radicals (•OOH, •OOCH3 and •OCH3) to find out whether this activity may also play a crucial role in the context of protein glycation inhibition. Our results show that, at physiological pH, pyridoxamine can trap the •OCH3 radical, in both aqueous and lipidic media, with rate constants in the diffusion limit (>1.0 × 108 M - 1 s - 1 ). The quickest pathways involve the transfer of the hydrogen atoms from the protonated pyridine nitrogen, the protonated amino group or the phenolic group. Its reactivity towards •OOH and •OOCH3 is smaller, but pyridoxamine can still scavenge them with moderate rate constants in aqueous media. Since reactive oxygen species are also involved in the formation of AGEs, these results highlight that the antioxidant capacity of pyridoxamine is also relevant to explain its inhibitory role on the glycation process.

5.
J Chem Inf Model ; 59(4): 1458-1471, 2019 04 22.
Article in English | MEDLINE | ID: mdl-30933517

ABSTRACT

Intrinsically disordered proteins (IDPs) are not well described by a single 3D conformation but by an ensemble of them, which makes their structural characterization especially challenging, both experimentally and computationally. Most all-atom force fields are designed for folded proteins and give too compact IDP conformations. α-Synuclein is a well-known IDP because of its relation to Parkinson's disease (PD). To understand its role in this disease at the molecular level, an efficient methodology is needed for the generation of conformational ensembles that are consistent with its known properties (in particular, with its dimensions) and that is readily extensible to post-translationally modified forms of the protein, commonly found in PD patients. Herein, we have contributed to this goal by performing explicit-solvent, microsecond-long Replica Exchange with Solute Scaling (REST2) simulations of α-synuclein with the coarse-grained force field SIRAH, finding that a 30% increase in the default strength of protein-water interactions yields a much better reproduction of its radius of gyration. Other known properties of α-synuclein, such as chemical shifts, secondary structure content, and long-range contacts, are also reproduced. Furthermore, we have simulated a glycated form of α-synuclein to suggest the extensibility of the method to its post-translationally modified forms. The computationally efficient REST2 methodology in combination with coarse-grained representations will facilitate the simulations of this relevant IDP and its modified forms, enabling a better understanding of their roles in disease and potentially leading to efficient therapies.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Molecular Dynamics Simulation , alpha-Synuclein/chemistry , Amino Acid Sequence , Protein Folding , Protein Structure, Secondary
6.
J Chem Theory Comput ; 15(5): 3354-3361, 2019 May 14.
Article in English | MEDLINE | ID: mdl-30913388

ABSTRACT

Predicting the complete free energy landscape associated with protein-ligand unbinding may greatly help designing drugs with highly optimized pharmacokinetics. Here we investigate the unbinding of the iperoxo agonist to its target human neuroreceptor M2, embedded in a neuronal membrane. By feeding out-of-equilibrium molecular simulations data in a classification analysis, we identify the few essential reaction coordinates of the process. The full landscape is then reconstructed using an exact enhanced sampling method, well-tempered metadynamics in its funnel variant. The calculations reproduce well the measured affinity, provide a rationale for mutagenesis data, and show that the ligand can escape via two different routes. The allosteric modulator LY2119620 turns out to hamper both escapes routes, thus slowing down the unbinding process, as experimentally observed. This computationally affordable protocol is totally general, and it can be easily applied to determine the full free energy landscape of membrane receptors/drug interactions.


Subject(s)
Isoxazoles/pharmacology , Molecular Dynamics Simulation , Quaternary Ammonium Compounds/pharmacology , Receptor, Muscarinic M2/agonists , Thermodynamics , Humans , Isoxazoles/chemistry , Ligands , Quaternary Ammonium Compounds/chemistry , Receptor, Muscarinic M2/chemistry
7.
Int J Biol Macromol ; 129: 254-266, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30738904

ABSTRACT

The understanding of the effect of non-enzymatic post-translational modifications on the protein structure is essential to unveil the molecular mechanisms underlying their related pathological processes. Among those modifications, protein glycation emerges as one of the main responsible for the development of diabetes-related diseases. While some reports suggest that glycation has a chaotropic effect, others indicate that it does not modify the protein structure. Here we aim to better clarify this effect and therefore, we have studied the effect of glycation mediated by ribose and methylglyoxal on a fifteen-residue model peptide, which readily undergoes a pH-induced coil-helix transition. Neither ribose nor methylglyoxal were able to induce the structuration of the peptide at physiological pH. Moreover, neither ribose nor methylglyoxal severely modified the α-helical structure acquired by the peptide at pH ~ 3. Among the different glycation products experimentally detected (i.e. the ribose-derived Schiff base; the Amadori compound; Nε-(carboxyethyl)lysine; Nε-(carboxymethyl)lysine; and MOLD), the Amadori compound was the one with the greatest impact on the α-helicity. Our data contribute to clarify the effect of glycation on the structure of proteins by proving that the glycation products do not necessarily affect the α-helical structure of a peptide stretch.


Subject(s)
Peptides/chemistry , Protein Conformation, alpha-Helical , Glycation End Products, Advanced/chemistry , Glycosylation , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Dynamics Simulation , Peptides/chemical synthesis , Peptides/metabolism , Schiff Bases/chemistry , Spectrum Analysis
8.
J Am Chem Soc ; 139(13): 4780-4788, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28290199

ABSTRACT

Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as koff = 0.020 ± 0.011 s-1. This is in good agreement with the experimental value (koff = 0.14 s-1). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.


Subject(s)
Molecular Dynamics Simulation , Protein Kinase Inhibitors/pharmacology , Urea/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Kinetics , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thermodynamics , Urea/analogs & derivatives , Urea/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Sci Rep ; 5: 12052, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26169912

ABSTRACT

Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors.


Subject(s)
Muramidase/metabolism , Pyridines/pharmacology , Amyloid/chemistry , Amyloid/metabolism , Animals , Binding Sites , Hydrogen-Ion Concentration , Kinetics , Microscopy, Atomic Force/methods , Models, Molecular , Molecular Docking Simulation , Muramidase/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological , Protein Binding , Protein Conformation , Protein Stability/drug effects , Proteolysis , Pyridines/chemistry , Thermodynamics
10.
Phys Chem Chem Phys ; 15(38): 16303-13, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-23999915

ABSTRACT

Accurate prediction of thermodynamic constants of chemical reactions in solution is one of the current challenges in computational chemistry. We report a scheme for predicting stability constants (log ß) and pKa values of metal complexes in solution by means of calculating free energies of ligand- and proton-exchange reactions using Density Functional Theory calculations in combination with a continuum solvent model. The accuracy of the predicted log ß and pKa values (mean absolute deviations of 1.4 and 0.2 units respectively) is equivalent to the experimental uncertainties. This theoretical methodology provides direct knowledge of log ß and pKa values of major and minor species, so it is of potential use in combination with experimental techniques to obtain a detailed description of the microscopic equilibria. In particular, the proposed methodology is shown to be especially useful for obtaining the real acidity constants of those chelates where the metal-ligand coordination changes as a result of ligand deprotonation. The stability and acidity constants of pyridoxamine-Cu(2+) chelates calculated with the proposed methodology show that pyridoxamine is an efficient scavenging agent of Cu(2+) under physiological pH conditions. This is of special interest as Cu(2+) overload is involved in the formation of advanced glycation end-products (AGEs) and their associated degenerative medical conditions.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Glycation End Products, Advanced/antagonists & inhibitors , Models, Molecular , Pyridoxamine/chemistry , Coordination Complexes/metabolism , Glycation End Products, Advanced/metabolism , Hydrogen-Ion Concentration , Kinetics
11.
J Phys Chem B ; 117(8): 2339-47, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23387946

ABSTRACT

This study reports the carbon acidities of Cα and C4' atoms in the Schiff bases of pyridoxal-5'-phosphate (PLP) and pyridoxamine-5'-phosphate (PMP) complexed with several biologically available metal ions (Mg2+, Ni2+, Zn2+, Cu2+, Al3+, and Fe3+). Density functional theory calculations were carried out to determine the free energies of proton exchange reactions of a set of 18 carbon acids and a Schiff base used as a reference species. The experimental pK(a) values of such carbon acids were used to calibrate the computed free energies in a range of 30 pK(a) units. Eventually, the pK(a)s of the chelates were obtained by calculating the corresponding free energies against the same reference species and by considering the previous calibration. The carbon acidity of Cα in the chelates of Mg2+, Ni2+, Zn2+, and Cu2+ varies between pK(a) 22 and pK(a) 13 whereas the pK(a) values of C4' range between 18 and 7. Chelation of trivalent metals Al3+ and Fe3+ causes further decrease of the pK(a) values of Cα and C4' down to 10 and 5, respectively. The results highlight the efficiency of the combined action of Schiff base formation and metal chelation to activate the Cα carbon of amino acids (pK(a) 29 for zwitterionic alanine). Our results explain that the experimental increase of transamination rates by Zn2+ chelation is due to stabilization of the reactive Schiff base species with respect to the free ligand under physiological pH conditions. However, the increase in reactivity for transamination due to Cu2+ and Al3+ chelation is mostly due to C­H ligand activation. Each metal ion activates the Cα and C4' carbon atoms to a different extent, which can be exploited to favor specific reactions on the amino acids in aqueous solution. Metal chelation hinders both intramolecular and intermolecular proton-transfer reactions of the imino, phenol, and carboxylate groups. This is the only apparent inconvenience of metal complexes in enzymatic reactions, which, in turn, proposes their consideration for enzyme inhibition.


Subject(s)
Chelating Agents/chemistry , Metals/chemistry , Pyridoxal Phosphate/chemistry , Pyridoxamine/analogs & derivatives , Schiff Bases/chemistry , Carbon/chemistry , Catalysis , Coordination Complexes/chemistry , Hydrogen/chemistry , Kinetics , Models, Chemical , Pyridoxamine/chemistry
12.
J Phys Chem B ; 116(35): 10665-75, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22845654

ABSTRACT

The origins of C-H activation in pyridoxal-5'-phosphate (PLP) Schiff bases and modulation of reaction specificity in PLP-enzymes are still not completely understood. There are no available studies that compare the reactivity of C4' carbons in ketimine Schiff bases with that of Cα carbons in their aldimine counterparts, which is essential to unravel the mechanisms that govern the evolution of their common carbanionic intermediates. Second-order rate constants for phosphate-catalyzed proton/deuterium exchange reactions in D(2)O of C4' carbons suffer a 10(5)-fold increase due to Schiff base formation (k(B) = 5.3 × 10(1) M(-1) s(-1)) according to NMR measurements. The C4' carbon acidity is also increased to pK(a) = 9.8, which is significantly higher than that of Cα in PLP-aldimines. DFT calculations reveal the role of each heteroatom in modulating the electrophilicity of C4' and Cα carbons. Specifically, the protonation state of pyridine nitrogen is the main factor in determining the absolute carbon acidity in aldimines (pK(a) of Cα varies from ∼14 to ∼23) and ketimines (pK(a) of C4' varies from ∼12 to ∼18), whereas the protonation state of both imine nitrogen and O3' phenol oxygen modulates the relative acidities of Cα and C4' from 1.5 to 7.5 pK(a) units. Our results provide an explanation to the modulation of reaction specificity observed in different PLP-enzymes based on the differences in the protonation state of the cofactor and H-bonding patterns in the active site.


Subject(s)
Imines/chemistry , Pyridoxal Phosphate/chemistry , Schiff Bases/chemistry , Carbon/chemistry , Deuterium Exchange Measurement , Hydrogen/chemistry , Hydrogen Bonding , Kinetics , Magnetic Resonance Spectroscopy , Nitrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...