Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607013

ABSTRACT

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Humans , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , Reactive Oxygen Species/metabolism , Muscle, Skeletal/metabolism , Mitochondria/metabolism
2.
Cytotherapy ; 25(7): 704-711, 2023 07.
Article in English | MEDLINE | ID: mdl-37061899

ABSTRACT

BACKGROUND AIMS: A large part of mesenchymal stromal cell (MSC) regenerative and immunomodulatory action is mediated by paracrine signaling. Hence, an increasing body of evidence acknowledges the potential of MSC secretome in a variety of preclinical and clinical scenarios. Mid-term serum deprivation is a common approach in the pipeline of MSC secretome production. Nevertheless, up to now, little is known about the impact of this procedure on the metabolic status of donor cells. METHODS: Here, through untargeted differential metabolomics, we revealed an impairment of mitochondrial metabolism in adipose-derived MSCs exposed for 72 h to serum deprivation. RESULTS: This evidence was further confirmed by the significant accumulation of reactive oxygen species and the reduction of succinate dehydrogenase activity. Probably as a repair mechanism, an upregulation of mitochondrial superoxide dismutase was also induced. CONCLUSIONS: Of note, the analysis of mitochondrial functionality indicated that, despite a significant reduction of basal respiration and ATP production, serum-starved MSCs still responded to changes in energy demand. This metabolic phenotype correlates with the obtained evidence of mitochondrial elongation and branching upon starvation.


Subject(s)
Adipocytes , Mitochondria , Humans , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Obesity , Stromal Cells/metabolism
3.
Cell Death Discov ; 8(1): 459, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36396939

ABSTRACT

Skeletal muscle growth and regeneration involves the activity of resident adult stem cells, namely satellite cells (SC). Despite numerous mechanisms have been described, different signals are emerging as relevant in SC homeostasis. Here we demonstrated that the Receptor for Activated C-Kinase 1 (RACK1) is important in SC function. RACK1 was expressed transiently in the skeletal muscle of post-natal mice, being abundant in the early phase of muscle growth and almost disappearing in adult mature fibers. The presence of RACK1 in interstitial SC was also detected. After acute injury in muscle of both mouse and the fruit fly Drosophila melanogaster (used as alternative in vivo model) we found that RACK1 accumulated in regenerating fibers while it declined with the progression of repair process. To note, RACK1 also localized in the active SC that populate recovering tissue. The dynamics of RACK1 levels in isolated adult SC of mice, i.e., progressively high during differentiation and low compared to proliferating conditions, and RACK1 silencing indicated that RACK1 promotes both the formation of myotubes and the accretion of nascent myotubes. In Drosophila with depleted RACK1 in all muscle cells or, specifically, in SC lineage we observed a delayed recovery of skeletal muscle after physical damage as well as the low presence of active SC in the wound area. Our results also suggest the coupling of RACK1 to muscle unfolded protein response during SC activation. Collectively, we provided the first evidence that transient levels of the evolutionarily conserved factor RACK1 are critical for adult SC activation and proper skeletal muscle regeneration, favoring the efficient progression of SC from a committed to a fully differentiated state.

SELECTION OF CITATIONS
SEARCH DETAIL
...