Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 58(1): 27-33, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17659613

ABSTRACT

A preliminary study of discrimination between GABA and macromolecules (MMs) in human brain by proton double quantum filtering (DQF) at 3.0 T in vivo is presented. GABA-tuned and MM-tuned DQ filters were designed with dual-band 180 degrees radiofrequency (RF) pulses that were tuned for selective refocusing of GABA (3.0 and 1.9 ppm) and putative MM resonances (3.0 and 1.7 ppm), respectively. GABA and putative MM signals were extracted from a combined analysis of the filtered mixture signals and the calculated editing yields. Unexpectedly, the GABA and putative MM signals exhibited a similar doublet linewidth at the optimized TE = 82 ms. Furthermore, substantial MM-tuned DQF signal remained at TE = 148 ms, indicating the presence of a component other than MM. With water segmentation data, the GABA-tuned and MM-tuned DQF measures from the medial prefrontal and left frontal lobes were combined to give the concentrations of GABA and the additional component as 1.1 +/- 0.1 and 0.8 +/- 0.1 mM (mean +/- SD, N=3) for gray matter (GM) and 0.4 +/- 0.1 and 0.7+/-0.1 mM (N=3) for white matter (WM), respectively.


Subject(s)
Brain Chemistry , Magnetic Resonance Spectroscopy/methods , gamma-Aminobutyric Acid/analysis , Humans
2.
Magn Reson Med ; 56(5): 971-7, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17029225

ABSTRACT

The proton NMR transverse relaxation time T(2) of glutamate (Glu) in human brain was measured by means of spectrally selective refocusing at 3.0 T in vivo. An 81.4-ms-long dual-band Gaussian 180 degrees RF pulse, designed for refocusing at 2.35 and 3.03 ppm, was employed within point-resolved spectroscopy (PRESS) to generate the Glu C4-proton target multiplet and the total creatine (tCr) singlet. Six optimal echo times (TEs) between 128 and 380 ms were selected from numerical analysis of the filtering performance for effective detection of the Glu signal with minimal contamination from glutamine (Gln), N-acetylaspartate (NAA), and glutathione (GSH). The magnetization of Glu and tCr was extracted from spectral fitting of experimental and calculated spectra. Apparent T(2) values of Glu and tCr were estimated as 201 +/- 18 and 164 +/- 12 ms for the medial prefrontal (PF) cortex, and 198 +/- 22 and 169 +/- 15 ms (mean +/- SD, N = 5) for the left frontal (LF) cortex, respectively. With water segmentation data, the magnetization values of Glu and tCr of the two adjacent voxels, calculated from the T(2) values and spectra following the thermal equilibrium magnetization, were combined to give the Glu and tCr concentrations as 10.37 +/- 1.06 and 8.87 +/- 0.56 mM for gray matter (GM), and 5.06 +/- 0.57 and 5.16 +/- 0.45 mM (mean +/- SD, N = 5) for white matter (WM), respectively.


Subject(s)
Algorithms , Brain/metabolism , Glutamic Acid/analysis , Nerve Fibers, Myelinated/metabolism , Neurons/metabolism , Adult , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...