Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res ; 261: 36-46, 2023 11.
Article in English | MEDLINE | ID: mdl-37690170

ABSTRACT

Electroencephalography is a method of detecting and analyzing electrical activity in the brain. This electrical activity can be recorded and processed to aid in the clinical diagnosis of mental disorders. In this study, a novel system for classifying schizophrenia patients from EEG recordings is presented. The developed algorithm decomposes the EEG signals into a system of radial basis functions using the method of fuzzy means. This decomposition helps to obtain the information from the various electrodes of the EEG and allows separating between healthy controls and patients with schizophrenia. The proposed method has been compared with classical machine learning algorithms, such as, K-Nearest Neighbor, Adaboost, Support Vector Machine, and Bayesian Linear Discriminant Analysis. The results show that the proposed method obtains the highest values in terms of balanced accuracy, recall, precision and F1 score, close to 93 % in all cases. The model developed in this study can be implemented in brain activity analysis systems that help in the prediction of patients with schizophrenia.


Subject(s)
Deep Learning , Schizophrenia , Humans , Schizophrenia/diagnosis , Bayes Theorem , Electroencephalography/methods , Algorithms , Support Vector Machine , Signal Processing, Computer-Assisted
2.
J Investig Med ; 71(7): 742-752, 2023 10.
Article in English | MEDLINE | ID: mdl-37158077

ABSTRACT

Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Early diagnosis is currently the most effective way to save the lives of patients with SLE. But it is very difficult to detect in the early stages of the disease. Because of this, this study proposes a machine learning system to help diagnose patients with SLE. To carry out the research, the extreme gradient boosting method has been implemented due to its performance characteristics, as it allows high performance, scalability, accuracy, and low computational load. From this method we try to recognize patterns in the data obtained from patients, which allow the classification of SLE patients with high accuracy and differentiate these patients from controls. Several machine learning methods have been analyzed in this study. The proposed method achieves a higher prediction value of patients who may suffer from SLE than the rest of the compared systems. The proposed algorithm achieved an improvement in accuracy of 4.49% over k-Nearest Neighbors. As for the Support Vector Machine and Gaussian Naive Bayes (GNB) methods, they achieved a lower performance than the proposed one, reaching values of 83% and 81%, respectively. It should be noted that the proposed system showed a higher area under the curve (90%) and a balanced accuracy (90%) than the other machine learning methods. This study shows the usefulness of ML techniques for identifying and predicting SLE patients. These results demonstrate the possibility of developing automatic diagnostic support systems for SLE patients based on machine learning techniques.


Subject(s)
Lupus Erythematosus, Systemic , Humans , Bayes Theorem , Lupus Erythematosus, Systemic/diagnosis , Machine Learning , Algorithms
3.
J Clin Med ; 11(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36012968

ABSTRACT

Among the IL-6 inhibitors, tocilizumab is the most widely used therapeutic option in patients with SARS-CoV-2-associated severe respiratory failure (SRF). The aim of our study was to provide evidence on predictors of poor outcome in patients with COVID-19 treated with tocilizumab, using machine learning (ML) techniques. We conducted a retrospective study, analyzing the clinical, laboratory and sociodemographic data of patients admitted for severe COVID-19 with SRF, treated with tocilizumab. The extreme gradient boost (XGB) method had the highest balanced accuracy (93.16%). The factors associated with a worse outcome of tocilizumab use in terms of mortality were: baseline situation at the start of tocilizumab treatment requiring invasive mechanical ventilation (IMV), elevated ferritin, lactate dehydrogenase (LDH) and glutamate-pyruvate transaminase (GPT), lymphopenia, and low PaFi [ratio between arterial oxygen pressure and inspired oxygen fraction (PaO2/FiO2)] values. The factors associated with a worse outcome of tocilizumab use in terms of hospital stay were: baseline situation at the start of tocilizumab treatment requiring IMV or supplemental oxygen, elevated levels of ferritin, glutamate-oxaloacetate transaminase (GOT), GPT, C-reactive protein (CRP), LDH, lymphopenia, and low PaFi values. In our study focused on patients with severe COVID-19 treated with tocilizumab, the factors that were weighted most strongly in predicting worse clinical outcome were baseline status at the start of tocilizumab treatment requiring IMV and hyperferritinemia.

4.
J Investig Med ; 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35850970

ABSTRACT

Different demographic, clinical and laboratory variables have been related to the severity and mortality following SARS-CoV-2 infection. Most studies applied traditional statistical methods and in some cases combined with a machine learning (ML) method. This is the first study to date to comparatively analyze five ML methods to select the one that most closely predicts mortality in patients admitted with COVID-19. The aim of this single-center observational study is to classify, based on different types of variables, adult patients with COVID-19 at increased risk of mortality. SARS-CoV-2 infection was defined by a positive reverse transcriptase PCR. A total of 203 patients were admitted between March 15 and June 15, 2020 to a tertiary hospital. Data were extracted from the electronic medical record. Four supervised ML algorithms (k-nearest neighbors (KNN), decision tree (DT), Gaussian naïve Bayes (GNB) and support vector machine (SVM)) were compared with the eXtreme Gradient Boosting (XGB) method proposed to have excellent scalability and high running speed, among other qualities. The results indicate that the XGB method has the best prediction accuracy (92%), high precision (>0.92) and high recall (>0.92). The KNN, SVM and DT approaches present moderate prediction accuracy (>80%), moderate recall (>0.80) and moderate precision (>0.80). The GNB algorithm shows relatively low classification performance. The variables with the greatest weight in predicting mortality were C reactive protein, procalcitonin, glutamyl oxaloacetic transaminase, glutamyl pyruvic transaminase, neutrophils, D-dimer, creatinine, lactic acid, ferritin, days of non-invasive ventilation, septic shock and age. Based on these results, XGB is a solid candidate for correct classification of patients with COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...