Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Leukemia ; 36(8): 2076-2085, 2022 08.
Article in English | MEDLINE | ID: mdl-35610346

ABSTRACT

Immunoglobulin light chain (AL) amyloidosis is caused by a small, minimally proliferating B-cell/plasma-cell clone secreting a patient-unique, aggregation-prone, toxic light chain (LC). The pathogenicity of LCs is encrypted in their sequence, yet molecular determinants of amyloidogenesis are poorly understood. Higher rates of N-glycosylation among clonal κ LCs from patients with AL amyloidosis compared to other monoclonal gammopathies indicate that this post-translational modification is associated with a higher risk of developing AL amyloidosis. Here, we exploited LC sequence information from previously published amyloidogenic and control clonal LCs and from a series of 220 patients with AL amyloidosis or multiple myeloma followed at our Institutions to define sequence and spatial features of N-glycosylation, combining bioinformatics, biochemical, proteomics, structural and genetic analyses. We found peculiar sequence and spatial pattern of N-glycosylation in amyloidogenic κ LCs, with most of the N-glycosylation sites laying in the framework region 3, particularly within the E strand, and consisting mainly of the NFT sequon, setting them apart with respect to non-amyloidogenic clonal LCs. Our data further support a potential role of N-glycosylation in determining the pathogenic behavior of a subset of amyloidogenic LCs and may help refine current N-glycosylation-based prognostic assessments for patients with monoclonal gammopathies.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Multiple Myeloma , Amyloidosis/genetics , Glycosylation , Humans , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light-chain Amyloidosis/genetics , Immunoglobulin kappa-Chains/genetics , Multiple Myeloma/genetics
3.
Blood Cancer J ; 11(2): 34, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594045

ABSTRACT

Light chain (AL) amyloidosis is caused by a small B-cell clone producing light chains that form amyloid deposits and cause organ dysfunction. Chemotherapy aims at suppressing the production of the toxic light chain (LC) and restore organ function. However, even complete hematologic response (CR), defined as negative serum and urine immunofixation and normalized free LC ratio, does not always translate into organ response. Next-generation flow (NGF) cytometry is used to detect minimal residual disease (MRD) in multiple myeloma. We evaluated MRD by NGF in 92 AL amyloidosis patients in CR. Fifty-four percent had persistent MRD (median 0.03% abnormal plasma cells). There were no differences in baseline clinical variables in patients with or without detectable MRD. Undetectable MRD was associated with higher rates of renal (90% vs 62%, p = 0.006) and cardiac response (95% vs 75%, p = 0.023). Hematologic progression was more frequent in MRD positive (0 vs 25% at 1 year, p = 0.001). Altogether, NGF can detect MRD in approximately half the AL amyloidosis patients in CR, and persistent MRD can explain persistent organ dysfunction. Thus, this study supports testing MRD in CR patients, especially if not accompanied by organ response. In case MRD persists, further treatment could be considered, carefully balancing residual organ damage, patient frailty, and possible toxicity.


Subject(s)
Flow Cytometry , Immunoglobulin Light-chain Amyloidosis/diagnosis , Neoplasm, Residual/diagnosis , Aged , Disease Progression , Disease-Free Survival , Female , Humans , Male , Middle Aged , Prognosis
4.
Cells ; 6(1)2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28282903

ABSTRACT

The burst of reprogramming technology in recent years has revolutionized the field of stem cell biology, offering new opportunities for personalized, regenerative therapies. The direct reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) has provided an invaluable tool to study and model a wide range of human diseases. Here, we review the transforming potential of such a strategy in research and in therapies applicable to the hematology field.

SELECTION OF CITATIONS
SEARCH DETAIL
...