Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Neurosurg ; : 1-11, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30497166

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the safety and clinical outcomes associated with stereotactic surgical implantation of modified bone marrow-derived mesenchymal stem cells (SB623) in patients with stable chronic ischemic stroke. METHODS: This was a 2-year, open-label, single-arm, phase 1/2a study; the selected patients had chronic motor deficits between 6 and 60 months after nonhemorrhagic stroke. SB623 cells were administered to the target sites surrounding the subcortical stroke region using MRI stereotactic image guidance. RESULTS: A total of 18 patients were treated with SB623 cells. All experienced at least 1 treatment-emergent adverse event (TEAE). No patients withdrew due to adverse events, and there were no dose-limiting toxicities or deaths. The most frequent TEAE was headache related to the surgical procedure (88.9%). Seven patients experienced 9 serious adverse events, which resolved without sequelae. In 16 patients who completed 24 months of treatment, statistically significant improvements from baseline (mean) at 24 months were reported for the European Stroke Scale (ESS) score, 5.7 (95% CI 1.4-10.1, p < 0.05); National Institutes of Health Stroke Scale (NIHSS) score, -2.1 (95% CI -3.3 to -1.0, p < 0.01), Fugl-Meyer (F-M) total score, 19.4 (95% CI 9.9-29.0, p < 0.01); and F-M motor scale score, 10.4 (95% CI 4.0-16.7, p < 0.01). Measures of efficacy reached plateau by 12 months with no decline thereafter. There were no statistically significant changes in the modified Rankin Scale score. The size of transient lesions detected by T2-weighted FLAIR imaging in the ipsilateral cortex at weeks 1-2 postimplantation significantly correlated with improvement in ESS (0.619, p < 0.05) and NIHSS (-0.735, p < 0.01) scores at 24 months. CONCLUSIONS: In this completed 2-year phase 1/2a study, implantation of SB623 cells in patients with stable chronic stroke was safe and was accompanied by improvements in clinical outcomes.Clinical trial registration no.: NCT01287936 (clinicaltrials.gov).

2.
Cancer ; 123(16): 3061-3072, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28411378

ABSTRACT

BACKGROUND: Telomerase activity in leukemic blasts frequently is increased among patients with high-risk acute myeloid leukemia (AML). In the current study, the authors evaluated the feasibility, safety, immunogenicity, and therapeutic potential of human telomerase reverse transcriptase (hTERT)-expressing autologous dendritic cells (hTERT-DCs) in adult patients with AML. METHODS: hTERT-DCs were produced from patient-specific leukapheresis, electroporated with an mRNA-encoding hTERT and a lysosomal-targeting sequence, and cryopreserved. A total of 22 patients with a median age of 58 years (range, 30-75 years) with intermediate-risk or high-risk AML in first or second complete remission (CR) were enrolled. hTERT-DCs were generated for 24 patients (73%). A median of 17 intradermal vaccinations (range, 6-32 intradermal vaccinations) containing 1×107 cells were administered as 6 weekly injections followed by 6 biweekly injections. A total of 21 patients (16 in first CR, 3 in second CR, and 2 with early disease recurrence) received hTERT-DCs. RESULTS: hTERT-DCs were well tolerated with no severe toxicities reported, with the exception of 1 patient who developed idiopathic thrombocytopenic purpura. Of the 19 patients receiving hTERT-DCs in CR, 11 patients (58%) developed hTERT-specific T-cell responses that primarily were targeted toward hTERT peptides with predicted low human leukocyte antigen (HLA)-binding affinities. With a median follow-up of 52 months, 58% of patients in CR (11 of 19 patients) were free of disease recurrence at the time of their last follow-up visit; 57% of the patients who were aged ≥60 years (4 of 7 patients) also were found to be free of disease recurrence at a median follow-up of 54 months. CONCLUSIONS: The generation of hTERT-DCs is feasible and vaccination with hTERT-DCs appears to be safe and may be associated with favorable recurrence-free survival. Cancer 2017;123:3061-72. © 2017 American Cancer Society.


Subject(s)
Cancer Vaccines/therapeutic use , Dendritic Cells/metabolism , Immunotherapy/methods , Leukapheresis , Leukemia, Myeloid, Acute/therapy , Telomerase/genetics , Adult , Aged , Disease-Free Survival , Enzyme-Linked Immunospot Assay , Feasibility Studies , Female , Humans , Leukemia, Myeloid, Acute/immunology , Male , Middle Aged , RNA, Messenger , Remission Induction , T-Lymphocytes/immunology
3.
J Tissue Eng Regen Med ; 11(6): 1835-1843, 2017 06.
Article in English | MEDLINE | ID: mdl-26440859

ABSTRACT

Regenerative medicine for the treatment of motor features in Parkinson's disease (PD) is a promising therapeutic option. Donor cells can simultaneously address multiple pathological mechanisms while responding to the needs of the host tissue. Previous studies have demonstrated that mesenchymal stromal cells (MSCs) promote recovery using various animal models of PD. SanBio Inc. has developed a novel cell type designated SB623, which are adult bone marrow-derived MSCs transfected with Notch intracellular domain. In this preclinical study, SB623 cells protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal injury when transplanted unilaterally into C57BL/6 mouse striatum 3 days prior to toxin exposure. Specifically, mice with the SB623 cell transplants revealed significantly higher levels of striatal dopamine, tyrosine hydroxylase immunoreactivity and stereological nigral cell counts in the ipsilateral hemisphere vs vehicle-treated mice following MPTP administration. Interestingly, improvement in markers of striatal dopaminergic integrity was also noted in the contralateral hemisphere. These data indicate that MSCs transplantation, specifically SB623 cells, may represent a novel therapeutic option to ameliorate damage related to PD, not only at the level of striatal terminals (i.e. the site of implantation) but also at the level of the nigral cell body. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Corpus Striatum , Dopamine/metabolism , MPTP Poisoning , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Adult , Animals , Cells, Cultured , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Female , Heterografts , Humans , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , MPTP Poisoning/therapy , Male , Mesenchymal Stem Cells/pathology , Mice
4.
Stroke ; 47(7): 1817-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27256670

ABSTRACT

BACKGROUND AND PURPOSE: Preclinical data suggest that cell-based therapies have the potential to improve stroke outcomes. METHODS: Eighteen patients with stable, chronic stroke were enrolled in a 2-year, open-label, single-arm study to evaluate the safety and clinical outcomes of surgical transplantation of modified bone marrow-derived mesenchymal stem cells (SB623). RESULTS: All patients in the safety population (N=18) experienced at least 1 treatment-emergent adverse event. Six patients experienced 6 serious treatment-emergent adverse events; 2 were probably or definitely related to surgical procedure; none were related to cell treatment. All serious treatment-emergent adverse events resolved without sequelae. There were no dose-limiting toxicities or deaths. Sixteen patients completed 12 months of follow-up at the time of this analysis. Significant improvement from baseline (mean) was reported for: (1) European Stroke Scale: mean increase 6.88 (95% confidence interval, 3.5-10.3; P<0.001), (2) National Institutes of Health Stroke Scale: mean decrease 2.00 (95% confidence interval, -2.7 to -1.3; P<0.001), (3) Fugl-Meyer total score: mean increase 19.20 (95% confidence interval, 11.4-27.0; P<0.001), and (4) Fugl-Meyer motor function total score: mean increase 11.40 (95% confidence interval, 4.6-18.2; P<0.001). No changes were observed in modified Rankin Scale. The area of magnetic resonance T2 fluid-attenuated inversion recovery signal change in the ipsilateral cortex 1 week after implantation significantly correlated with clinical improvement at 12 months (P<0.001 for European Stroke Scale). CONCLUSIONS: In this interim report, SB623 cells were safe and associated with improvement in clinical outcome end points at 12 months. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01287936.


Subject(s)
Bone Marrow Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Stroke/surgery , Adult , Aged , Female , Humans , Male , Middle Aged , Treatment Outcome
5.
Exp Neurol ; 269: 154-68, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25902036

ABSTRACT

Large animal and primate models of spinal cord injury (SCI) are being increasingly utilized for the testing of novel therapies. While these represent intermediary animal species between rodents and humans and offer the opportunity to pose unique research questions prior to clinical trials, the role that such large animal and primate models should play in the translational pipeline is unclear. In this initiative we engaged members of the SCI research community in a questionnaire and round-table focus group discussion around the use of such models. Forty-one SCI researchers from academia, industry, and granting agencies were asked to complete a questionnaire about their opinion regarding the use of large animal and primate models in the context of testing novel therapeutics. The questions centered around how large animal and primate models of SCI would be best utilized in the spectrum of preclinical testing, and how much testing in rodent models was warranted before employing these models. Further questions were posed at a focus group meeting attended by the respondents. The group generally felt that large animal and primate models of SCI serve a potentially useful role in the translational pipeline for novel therapies, and that the rational use of these models would depend on the type of therapy and specific research question being addressed. While testing within these models should not be mandatory, the detection of beneficial effects using these models lends additional support for translating a therapy to humans. These models provides an opportunity to evaluate and refine surgical procedures prior to use in humans, and safety and bio-distribution in a spinal cord more similar in size and anatomy to that of humans. Our results reveal that while many feel that these models are valuable in the testing of novel therapies, important questions remain unanswered about how they should be used and how data derived from them should be interpreted.


Subject(s)
Spinal Cord Injuries , Translational Research, Biomedical , Animals , Cell- and Tissue-Based Therapy/methods , Disease Models, Animal , Focus Groups , Humans , Primates , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/therapy , Surveys and Questionnaires , Translational Research, Biomedical/methods
6.
Front Syst Neurosci ; 8: 116, 2014.
Article in English | MEDLINE | ID: mdl-25009475

ABSTRACT

Modified mesenchymal stromal cells (MSCs) display a unique mechanism of action during the repair phase of traumatic brain injury by exhibiting the ability to build a biobridge between the neurogenic niche and the site of injury. Immunohistochemistry and laser capture assay have visualized this biobridge in the area between the neurogenic subventricular zone and the injured cortex. This biobridge expresses high levels of extracellular matrix metalloproteinases (MMPs), which are initially co-localized with a stream of transplanted MSCs, but later this region contains only few to non-detectable grafts and becomes overgrown by newly recruited host cells. We have reported that long-distance migration of host cells from the neurogenic niche to the injured brain site can be attained via these transplanted stem cell-paved biobridges, which serve as a key regenerative process for the initiation of endogenous repair mechanisms. Thus, far the two major schools of discipline in stem cell repair mechanisms support the idea of "cell replacement" and the bystander effects of "trophic factor secretion." Our novel observation of stem cell-paved biobridges as pathways for directed migration of host cells from neurogenic niche toward the injured brain site adds another mode of action underlying stem cell therapy. More in-depth investigations on graft-host interaction will likely aid translational research focused on advancing this stem cell-paved biobridge from its current place, as an equally potent repair mechanism as cell replacement and trophic factor secretion, into a new treatment strategy for traumatic brain injury and other neurological disorders.

7.
Stem Cell Res Ther ; 5(1): 29, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24572070

ABSTRACT

INTRODUCTION: Transplanting mesenchymal stromal cells (MSCs) or their derivatives into a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, immunosuppression, and neurogenic stimuli they provide. SB623, a cell therapy for the treatment of chronic stroke, currently in a clinical trial, is derived from bone marrow MSCs by using transient transfection with a vector encoding the human Notch1 intracellular domain. This creates a new phenotype, which is effective in experimental stroke, exhibits immunosuppressive and angiogenic activity equal or superior to parental MSCs in vitro, and produces extracellular matrix (ECM) that is exceptionally supportive for neural cell growth. The neuropoietic activity of SB623 and parental MSCs has not been compared, and the SB623-derived neuropoietic mediators have not been identified. METHODS: SB623 or parental MSCs were cocultured with rat embryonic brain cortex cells on cell-derived ECM in a previously characterized quantitative neuropoiesis assay. Changes in expression of rat neural differentiation markers were quantified by using rat-specific qRT-PCR. Human mediators were identified by using expression profiling, an enzymatic crosslinking activity, and functional interference studies by means of blocking antibodies, biologic inhibitors, and siRNA. Cocultures were immunolabeled for presynaptic vesicular transporters to assess neuronal specialization. RESULTS: Among six MSC/SB623 pairs, SB623 induced expression of rat neural precursor, oligodendrocyte, and astrocyte markers on average 2.6 to 3 times stronger than did their parental MSCs. SB623 expressed significantly higher FGF2, FGF1, and BMP4, and lower FGFR1 and FGFR2 levels; and human FGF1, FGF2, BMPs, and HGF were implicated as neuropoietic mediators. Neural precursors grew faster on SB623- than on MSC-derived ECM. SB623 exhibited higher expression levels and crosslinking activity of tissue transglutaminase (TGM2). TGM2 silencing reduced neural precursor growth on SB623-ECM. SB623 also promoted the induction of GABA-ergic, but not glutamatergic, neurons more effectively than did MSCs. CONCLUSIONS: These data demonstrate that SB623 cells tend to support neural cell growth more effectively than their parental MSCs and identify both soluble and insoluble mediators responsible, at least in part, for enhanced neuropoietic potency of SB623. The neuropoiesis assay is a useful tool for identifying beneficial factors produced by MSCs and their derivatives.


Subject(s)
Embryonic Stem Cells/cytology , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis , Receptor, Notch1/genetics , Adult , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cerebral Cortex/cytology , Culture Media, Conditioned/pharmacology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Male , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Rats , Receptor, Notch1/metabolism , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Transglutaminases/genetics , Transglutaminases/metabolism
8.
PLoS One ; 8(11): e79283, 2013.
Article in English | MEDLINE | ID: mdl-24244468

ABSTRACT

Mesenchymal stromal cells (MSCs) transiently transfected with notch1 intracellular domain (NICD) are beneficial for neurological disorders as observed in several preclinical studies. Extracellular matrix (ECM) derived from NICD-transfected MSCs has been previously shown to support in vitro neural cell growth and survival better than that of un-transfected MSCs. To understand the underlying mechanism(s) by which NICD-transfected MSC-derived ECM supports neural cell growth and survival, we investigated the differences in NICD-transfected MSC- and MSC-derived ECM protein quantity and composition. To compare the ECM derived from MSCs and NICD-transfected MSCs, the proteins were sequentially solubilized using sodium dodecyl sulfate (SDS) and urea, quantified, and compared across four human donors. We then analyzed ECM proteins using either in-gel digests or in-solution surfactant-assisted trypsin digests (SAISD) coupled with reverse phase nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Analyses using nLC-MS/MS identified key components of ECM from NICD-transfected MSCs and un-transfected MSCs and revealed significant differences in their respective compositions. This work provides a reproducible method for identifying and comparing in vitro cell-derived ECM proteins, which is crucial for exploring the mechanisms underlying cellular therapy.


Subject(s)
Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Proteome , Proteomics , Cell Line , Cell- and Tissue-Based Therapy , Extracellular Matrix/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression , Humans , Proteomics/methods
9.
PLoS One ; 8(9): e74857, 2013.
Article in English | MEDLINE | ID: mdl-24023965

ABSTRACT

Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.


Subject(s)
Brain Injuries/pathology , Brain Injuries/therapy , Brain/pathology , Neurogenesis , Stem Cell Transplantation , Stem Cells/cytology , Animals , Behavior, Animal , Cell Movement , Cell Proliferation , Male , Rats , Rats, Sprague-Dawley
10.
J Transl Med ; 11: 81, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23531336

ABSTRACT

BACKGROUND: Angiogenesis is a critical part of the endogenous repair process in brain injury and disease, and requires at least two sequential steps. First, angiogenic sprouting of endothelial cells occurs, which entails the initial proliferation of endothelial cells and remodeling of the surrounding extracellular matrix. Second, vessel stabilization is necessary to prevent vascular regression, which relies on vascular smooth muscle recruitment to surround the young vessels. Marrow stromal cells (MSCs) have been shown to promote revascularization after hindlimb ischemia, cardiac ischemia, and stroke. SB623 cells are derived from marrow stromal cells by transfection with a Notch1 intracellular domain (NICD)-expressing plasmid and are known to elicit functional improvement in experimental stroke. These cells are currently used in human clinical testing for treatment of chronic stroke. In the current study, the angiogenic property of SB623 cells was investigated using cell-based assays. METHODS: Angiogenic paracrine factors secreted by SB623 cells and the parental MSCs were identified using the Qantibody Human Angiogenesis Array. To measure the angiogenic activity of conditioned medium from SB623 cells and MSCs, endothelial tube formation in the human umbilical vein endothelial cell (HUVEC) assay and endothelial cell sprouting and branching in the rodent aortic ring assay were quantified. To validate the angiogenic contribution of VEGF in conditioned medium, endothelial cells and aortic rings were treated with SU5416, which inhibits VEGFR2 at low dose. RESULTS: Conditioned medium from SB623 cells promoted survival and proliferation of endothelial cells under serum-deprived conditions and supports HUVEC vascular tube formation. In a rodent aortic ring assay, there was enhanced endothelial sprouting and branching in response to SB623-derived conditioned medium. SU5416 treatment partially reversed the effect of conditioned medium on endothelial cell survival and proliferation while completely abrogate HUVEC tube formation and endothelial cell sprouting and branching in aortic ring assays. CONCLUSIONS: These data indicate that SB623 cell-secreted angiogenic factors promoted several aspects of angiogenesis, which likely contribute to promoting recovery in the injured brain.


Subject(s)
Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Receptors, Notch/genetics , Angiogenesis Inducing Agents/metabolism , Animals , Aorta/pathology , Cell Proliferation , Cell Survival , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells , Humans , Plasmids/metabolism , Rats , Rats, Sprague-Dawley , Regeneration , Stroke/therapy , Transfection
11.
Stem Cells Transl Med ; 2(3): 223-32, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23430693

ABSTRACT

Transplanting mesenchymal stromal cells (MSCs) or their derivatives in a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, and neurogenic stimuli they provide. There is a growing need for in vitro models of mesenchymal-neural cell interactions to enable identification of mediators of the MSC activity and quantitative assessment of neuropoietic potency of MSC preparations. Here, we characterize a microplate-format coculture system in which primary embryonic rat cortex cells are directly cocultured with human MSCs on cell-derived extracellular matrix (ECM) in the absence of exogenous growth factors. In this system, expression levels of the rat neural stem/early progenitor marker nestin, as well as neuronal and astrocytic markers, directly depended on MSC dose, whereas an oligodendrogenic marker exhibited a biphasic MSC-dose response, as measured using species-specific quantitative reverse transcription-polymerase chain reaction in total cell lysates and confirmed using immunostaining. Both neural cell proliferation and differentiation contributed to the MSC-mediated neuropoiesis. ECM's heparan sulfate proteoglycans were essential for the growth of the nestin-positive cell population. Neutralization studies showed that MSC-derived fibroblast growth factor 2 was a major and diffusible inducer of rat nestin, whereas MSC-derived bone morphogenetic proteins (BMPs), particularly, BMP4, were astrogenesis mediators, predominantly acting in a coculture setting. This system enables analysis of multifactorial MSC-neural cell interactions and can be used for elucidating the neuropoietic potency of MSCs and their derivative preparations.


Subject(s)
Biological Assay , Cerebral Cortex/metabolism , Mesenchymal Stem Cells/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Paracrine Communication , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Animals , Biological Assay/methods , Biomarkers/metabolism , Bone Morphogenetic Protein 4/metabolism , Cell Proliferation , Cell Shape , Cells, Cultured , Cerebral Cortex/embryology , Coculture Techniques , Culture Media, Conditioned/metabolism , Extracellular Matrix/metabolism , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation , Heparan Sulfate Proteoglycans/metabolism , Humans , Immunohistochemistry , Intermediate Filament Proteins/metabolism , Miniaturization , Nerve Tissue Proteins/metabolism , Nestin , Neurogenesis/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transfection
12.
Mol Ther ; 20(8): 1508-15, 2012 08.
Article in English | MEDLINE | ID: mdl-22828502

ABSTRACT

Selective inhibition of disease-related proteins underpins the majority of successful drug-target interactions. However, development of effective antagonists is often hampered by targets that are not druggable using conventional approaches. Here, we apply engineered zinc-finger protein transcription factors (ZFP TFs) to the endogenous phospholamban (PLN) gene, which encodes a well validated but recalcitrant drug target in heart failure. We show that potent repression of PLN expression can be achieved with specificity that approaches single-gene regulation. Moreover, ZFP-driven repression of PLN increases calcium reuptake kinetics and improves contractile function of cardiac muscle both in vitro and in an animal model of heart failure. These results support the development of the PLN repressor as therapy for heart failure, and provide evidence that delivery of engineered ZFP TFs to native organs can drive therapeutically relevant levels of gene repression in vivo. Given the adaptability of designed ZFPs for binding diverse DNA sequences and the ubiquity of potential targets (promoter proximal DNA), our findings suggest that engineered ZFP repressors represent a powerful tool for the therapeutic inhibition of disease-related genes, therefore, offering the potential for therapeutic intervention in heart failure and other poorly treated human diseases.


Subject(s)
Calcium-Binding Proteins/metabolism , Heart Failure/metabolism , Heart Failure/therapy , Transcription Factors/metabolism , Zinc Fingers/physiology , Adenoviridae/genetics , Animals , Blotting, Western , Calcium-Binding Proteins/genetics , Cell Line , Heart Failure/genetics , Humans , Kinetics , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Rats , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Zinc Fingers/genetics
13.
J Neuroinflammation ; 8: 133, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21982515

ABSTRACT

BACKGROUND: SB623 cells are expanded from marrow stromal cells (MSCs) transfected with a Notch intracellular domain (NICD)-expressing plasmid. In stroke-induced animals, these cells reduce infarct size and promote functional recovery. SB623 cells resemble the parental MSCs with respect to morphology and cell surface markers despite having been in extended culture. MSCs are known to have immunosuppressive properties; whether long-term culture of MSCs impact their immunomodulatory activity has not been addressed. METHODS: To assess the possible senescent properties of SB623 cells, we performed cell cycle related assays and beta-galactosidase staining. To assess the immunomodulatory activity of these expanded NICD-transfected MSCs, we performed co-cultures of SB623 cells or MSCs with either enriched human T cells or monocytes and assessed cytokine production by flow cytometry. In addition, we monitored the immunosuppressive activity of SB623 cells in both allogenic and xenogenic mixed lymphocyte reaction (MLR). RESULTS: Compared to MSCs, we showed that a small number of senescent-like cells appear in each lot of SB623 cells. Nevertheless, we demonstrated that these cells suppress human T cell proliferation in both the allogeneic and xenogeneic mixed lymphocyte reaction (MLR) in a manner comparable to MSCs. IL-10 producing T cells were generated and monocyte-dendritic cell differentiation was dampened by co-culture with SB623 cells. Compared to the parental MSCs, SB623 cells appear to exert a greater inhibitory impact on the maturation of dendritic cells as demonstrated by a greater reduction in the surface expression of the co-stimulatory molecule, CD86. CONCLUSION: The results demonstrated that the immunosuppressive activity of the expanded NICD-transfected MSCs is comparable to the parental MSCs, in spite of the appearance of a small number of senescent-like cells.


Subject(s)
Bone Marrow Cells/immunology , Immunosuppression Therapy , Receptors, Notch/immunology , Stromal Cells/immunology , Animals , Biomarkers/metabolism , Bone Marrow Cells/cytology , Cell Differentiation/immunology , Cell Line , Cell Proliferation , Cellular Senescence/physiology , Coculture Techniques , Cytokines/immunology , Humans , Monocytes/cytology , Monocytes/immunology , Receptors, Notch/genetics , Stromal Cells/cytology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
14.
Cell Transplant ; 19(8): 973-84, 2010.
Article in English | MEDLINE | ID: mdl-20350349

ABSTRACT

Cell transplantation is a promising treatment strategy for many neurological disorders, including stroke, which can target multiple therapeutic mechanisms in a sustained fashion. We investigated the ability of human mesenchymal stromal cells (MSCs) and MSC-derived SB623 cells to rescue neural cells via trophic support following an in vitro stroke model. Following oxygen glucose deprivation, cortical neurons or hippocampal slices were cocultured with either MSCs or SB623 cells separated by a semiporous membrane (prohibits cell-cell contact) or with MSC- or SB623 cell-conditioned medium. MSCs, SB623 cells, MSC-conditioned media, and SB623 cell-conditioned media all significantly reduced neural cell damage/death compared to untreated conditions, and the rescue effect of the conditioned media was dose dependent. We identified 11 neurotrophic factors secreted by MSCs and/or SB623 cells. This study emphasizes the importance of trophic support provided by marrow-derived cells, which likely contributes to the efficacy of cell therapy for brain injury.


Subject(s)
Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/metabolism , Neurons/cytology , Adult , Bone Marrow Cells/cytology , Brain Ischemia/therapy , Cell Survival , Cells, Cultured , Coculture Techniques , Hippocampus/cytology , Humans , Mesenchymal Stem Cells/cytology
15.
J Neurosci Res ; 87(14): 3198-206, 2009 Nov 01.
Article in English | MEDLINE | ID: mdl-19530164

ABSTRACT

Several studies have shown the benefits of transplanting bone marrow-derived multipotent mesenchymal stromal cells (MSC) into neurodegenerative lesions of the central nervous system, despite a low engraftment rate and the poor persistence of grafts. It is known that the extracellular matrix (ECM) modulates neuritogenesis and glial growth, but little is known about effects of MSC-derived ECM on neural cells. In this study, we demonstrate in vitro that the ECM produced by MSC can support neural cell attachment and growth. We also compare the neurosupportive properties of MSC to the MSC derivative, SB623 cells, which is being developed as a cell therapy for stroke. Embryonic rat brain cortical cells cultured for 3 weeks on human MSC- and SB623 cell-derived ECM exhibit about a 1.5 and 3 times higher metabolic activity, respectively, compared with the cultures grown on poly-D-lysine (PDL), although the initial neural cell adhesion to cell-derived ECM and PDL is similar. The MSC- and SB623 cell-derived ECM protects neural cells from nutrient and growth factor deprivation. Under the conditions used, only neurons grow on PDL. In contrast, both MSC- and SB623 cell-derived ECMs support the growth of neurons, astrocytes, and oligodendrocytes, as demonstrated by immunostaining. Morphologically, neurons on cell-derived ECM form more complex and extended neurite networks than those cultured on PDL. Together, these data indicate that the beneficial effect of MSC and SB623 cells in neurotransplantation could be explained in part by the neurosupportive properties of the ECM produced by these cells.


Subject(s)
Extracellular Matrix/metabolism , Neurons/cytology , Neurons/metabolism , Animals , Astrocytes/cytology , Bone Marrow Cells/metabolism , Cell Adhesion , Cell Proliferation , Cell Survival , Humans , Immunohistochemistry , Multipotent Stem Cells/cytology , Oligodendroglia/cytology , Rats , Receptor, Notch1/genetics , Stromal Cells/metabolism , Transfection
16.
Stem Cells Dev ; 18(10): 1501-14, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19301956

ABSTRACT

Gene transfection with Notch 1 intracellular domain and subsequent growth factor treatment stimulate neuron-like differentiation of bone marrow stromal cells (BMSCs). Here, we examined the potential of transplanting Notch-induced BMSCs to exert therapeutic effects in a rat model of chronic ischemic stroke. In experiment 1, Notch-induced rat BMSCs were intrastriatally transplanted in rats at 1 month after being subjected to transient occlusion of middle cerebral artery (MCAo). Compared to post-stroke/pretransplantation level, significant improvements in locomotor and neurological function were detected in stroke rats that received 100 k and 200 k BMSCs, but not in those that received 40 k BMSCs. Histological results revealed 9%-15% graft survival, which dose-dependently correlated with behavioral recovery. At 5 weeks post-transplantation, some grafted BMSCs were positive for the glial marker GFAP (about 5%), but only a few cells (2-5 cells per brain) were positive for the neuronal marker NeuN. However, at 12 weeks post-transplantation, where the number of GFAP-positive BMSCs was maintained (5%), there was a dramatic increase in NeuN-positive BMSCs (23%). In experiment 2, Notch-induced human BMSCs were intrastriatally transplanted in rats at 1 month following the same MCAo model. Improvements in both locomotor and neurological function were observed from day 7 to day 28 post-transplantation, with the high dose (180 k) displaying significantly better behavioral recovery than the low dose (90 k) or vehicle. There were no observable adverse behavioral effects during this study period that also involved chronic immunosuppression of all animals. Histological analyses revealed a modest 5%-7% graft survival, with few (<1%) cells expressing an intermediate MAP2 neuronal marker, but not glial or oligodendroglial markers. In addition, striatal peri-infarct cell loss was significantly reduced in transplanted stroke animals compared to vehicle-treated stroke animals. The present study demonstrates the potential of Notch-induced BMSC cell therapy for patients presenting with fixed ischemic stroke.


Subject(s)
Behavior, Animal , Bone Marrow Cells/cytology , Ischemia/pathology , Receptors, Notch/metabolism , Stroke/therapy , Stromal Cells/cytology , Stromal Cells/transplantation , Animals , Brain/pathology , Cell Survival , Chronic Disease , Glial Fibrillary Acidic Protein/metabolism , Humans , Ischemia/complications , Ischemia/therapy , Male , Neostriatum/cytology , Rats , Rats, Sprague-Dawley , Stroke/complications , Stroke/pathology , Transplantation, Heterologous , Transplantation, Homologous
17.
Biotechnol Bioeng ; 97(5): 1180-9, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17171718

ABSTRACT

Increasing the yield of therapeutic proteins from mammalian production cell lines reduces costs and decreases the time to market. To this end, we engineered a zinc finger protein transcription factor (ZFP TF) that binds a DNA sequence within the promoter driving transgene expression. This ZFP TF enabled >100% increase in protein yield from CHO cells in transient, stable, and fermentor production run settings. Expression vectors engineered to carry up to 10 ZFP binding sites further enhanced ZFP-mediated increases in protein production up to approximately 500%. The multimerized ZFP binding sites function independently of the promoter, and therefore across vector platforms. CHO cell lines stably expressing ZFP TFs demonstrated growth characteristics similar to parental cell lines. ZFP TF expression and gains in protein production were stable over >30 generations in the absence of antibiotic selection. Our results demonstrate that ZFP TFs can rapidly and stably increase protein production in mammalian cells.


Subject(s)
Genetic Enhancement/methods , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Transcription Factors/genetics , Zinc Fingers/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Promoter Regions, Genetic/genetics
18.
Diabetes ; 55(6): 1847-54, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16731852

ABSTRACT

Peripheral neuropathy is a common, irreversible complication of diabetes. We investigated whether gene transfer of an engineered zinc finger protein transcription factor (ZFP-TF) designed to upregulate expression of the endogenous vascular endothelial growth factor (VEGF)-A gene could protect against experimental diabetic neuropathy. ZFP-TF-driven activation of the endogenous gene results in expression of all of the VEGF-A isoforms, a fact that may be of significance for recapitulation of the proper biological responses stimulated by this potent neuroprotective growth factor. We show here that this engineered ZFP-TF activates VEGF-A in appropriate cells in culture and that the secreted VEGF-A protein induced by the ZFP protects neuroblastoma cell lines from a serum starvation insult in vitro. Importantly, single and repeat intramuscular injections of formulated plasmid DNA encoding the VEGF-A-activating ZFP-TF resulted in protection of both sensory and motor nerve conduction velocities in a streptozotocin-induced rat model of diabetes. These data suggest that VEGF-A-activating ZFP-TFs may ultimately be of clinical utility in the treatment of this disease.


Subject(s)
Diabetic Neuropathies/therapy , Genetic Therapy/methods , Transcription Factors/physiology , Vascular Endothelial Growth Factor A/physiology , Zinc Fingers/genetics , Animals , Cell Line , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Culture Media, Serum-Free/pharmacology , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetic Neuropathies/etiology , Diabetic Neuropathies/physiopathology , Gene Expression , Genetic Vectors/genetics , Humans , Rats , Retroviridae/genetics , Streptozocin/toxicity , Transcription Factors/genetics , Transfection , Vascular Endothelial Growth Factor A/genetics
19.
FASEB J ; 20(3): 479-81, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16423874

ABSTRACT

Advances in understanding the relationship between protein structure and DNA binding specificity have made it possible to engineer zinc finger protein (ZFP) transcription factors to specifically activate or repress virtually any gene. To evaluate the potential clinical utility of this approach for peripheral vascular disease, we investigated the ability of an engineered vascular endothelial growth factor (VEGFa)-activating ZFP (MVZ+426b) to induce angiogenesis and rescue hindlimb ischemia in a murine model. Hindlimb ischemia was surgically induced in advanced-age C57/BL6 mice. Adenovirus (Ad) encoding either MVZ+426b or the fluorescent marker dsRed was delivered to the adducter muscle of the ischemic hindlimb, and the effects on blood flow, limb salvage, and vascularization were assessed. Ad-MVZ+426b induced expression of VEGFa at the mRNA and protein levels and stimulated a significant increase in vessel counts in the ischemic limb. This was accompanied by significantly increased blood flow and limb salvage as measured serially for 4 wk. These data demonstrate that activation of the endogenous VEGFa gene by an engineered ZFP can induce angiogenesis in a clinically relevant model and further document the feasibility of designing ZFPs to therapeutically regulate gene expression in vivo.


Subject(s)
Gene Expression Regulation/genetics , Genetic Therapy , Genetic Vectors/therapeutic use , Ischemia/therapy , Neovascularization, Physiologic/genetics , Transcription Factors/physiology , Vascular Endothelial Growth Factor A/biosynthesis , Zinc Fingers/physiology , Adenoviridae/genetics , Aging , Amino Acid Sequence , Animals , Blood Flow Velocity , Feasibility Studies , Genes, Synthetic , Hindlimb/blood supply , Laser-Doppler Flowmetry , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Protein Engineering , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Recombinant Proteins , Structure-Activity Relationship , Transcription Factors/genetics , Vascular Endothelial Growth Factor A/genetics , Zinc Fingers/genetics
20.
Regul Pept ; 129(1-3): 227-32, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-15927720

ABSTRACT

Designed zinc finger proteins (ZFPs) regulate expression of target genes when coupled to activator or repressor domains. Transfection of ZFPs into cell lines can create expression systems where the targeted endogenous gene is transcribed and the protein of interest can be investigated in its own cellular context. Here we describe the pharmacological investigation of an expression system generated using CCK2 receptor-selective ZFPs transfected into human embryonic kidney cells (HEKZFP system). The receptors expressed in this system, in response to ZFP expression, were functional in calcium mobilization studies and the potency of the agonists investigated was consistent with their action at CCK2 receptors (CCK-8S pA50 = 9.05+/-0.11, pentagastrin pA50 = 9.11+/-0.13). In addition, binding studies were conducted using [125I]-BH-CCK-8S as radioligand. The saturation binding analysis of this radioligand was consistent with a single population of high affinity CCK receptors (pK(D) = 10.24). Competition studies were also conducted using a number of previously well-characterized CCK-receptor selective ligands; JB93182, YF476, PD-134,308, SR27897, dexloxiglumide, L-365,260 and L-364,718. Overall, the estimated affinity values for these ligands were consistent with their interaction at CCK2 receptors. Therefore, CCK2 receptors up-regulated using zinc finger protein technology can provide an alternative to standard transfection techniques for the pharmacological analysis of compounds.


Subject(s)
Kidney/metabolism , Receptor, Cholecystokinin B/biosynthesis , Transcription Factors/metabolism , Up-Regulation/drug effects , Cell Line , Drug Evaluation, Preclinical/methods , Humans , Kidney/cytology , Ligands , Pharmaceutical Preparations/metabolism , Receptor, Cholecystokinin B/antagonists & inhibitors , Transcription Factors/genetics , Transfection , Up-Regulation/genetics , Zinc Fingers/genetics , Zinc Fingers/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...