Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 71(2): 565-74, 2008 May 01.
Article in English | MEDLINE | ID: mdl-17963236

ABSTRACT

The structural and dynamical changes occurring before nucleotide addition were studied using molecular dynamics (MD) simulations of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) complexes containing one or two Mg2+ ions in the presence of dNTP. Our models revealed that the formation of a catalytically competent DNA polymerase complex required subtle rearrangements at the catalytic site A, which occurred only when an Mg2+ ion was bound. This model has been validated using pre-steady-state kinetics to show that free Mg2+ is necessary to obtain a catalytically competent polymerase. Kinetic studies carried out with Be2+ as a cofactor permitted the functional discrimination between metal sites A and B. At low concentrations, Be2+ increased the catalytic efficiency of the polymerase, while at higher concentrations, it competed with Mg2+ for binding to site A, and inhibited DNA polymerization. In agreement with experimental data, MD simulations revealed that the catalytic attack distance between the 3-OH of the primer and the phosphorus in complexes containing Be2+ instead of Mg2+ at site A was above 4.5 A. Our findings provide a detailed description of the mechanism of DNA polymerization and should be helpful to understand the molecular basis of DNA replication fidelity.


Subject(s)
HIV Reverse Transcriptase/drug effects , Magnesium/pharmacology , Beryllium/chemistry , Beryllium/pharmacology , Catalytic Domain , Computer Simulation , HIV Reverse Transcriptase/chemistry , Kinetics , Models, Molecular , Protein Binding , Protein Conformation/drug effects
2.
J Mol Biol ; 365(2): 298-309, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17070543

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) strains having dipeptide insertions in the fingers subdomain and other drug resistance-related mutations scattered throughout their reverse transcriptase (RT)-coding region show high-level resistance to zidovudine (AZT) and other nucleoside analogues. Those phenotypic effects have been correlated with their increased ATP-dependent phosphorolytic activity on chain-terminated primers. Mutations T69S and T215Y and a dipeptide insertion (i.e. Ser-Ser) between positions 69 and 70 are required to achieve low-level resistance to thymidine analogues. However, additional amino acid substitutions are necessary to achieve the high-level phenotypic resistance to AZT shown by clinical HIV isolates carrying a dipeptide insertion in their RT-coding region. In order to identify those mutations that contribute to resistance in the sequence context of an insertion-containing RT derived from an HIV clinical isolate (designated as SS RT), we expressed and purified a series of chimeric enzymes containing portions of the wild-type or SS RT sequences. ATP-mediated excision activity measurements using AZT- and stavudine (d4T)-terminated primers and phenotypic assays showed that molecular determinants of high-level resistance to AZT were located in the fingers subdomain of the polymerase. Further studies, using recombinant RTs obtained by site-directed mutagenesis, revealed that M41L, A62V and in a lesser extent K70R, were the key mutations that together with T69S, T215Y and the dipeptide insertion conferred high levels of ATP-dependent phosphorolytic activity on AZT and d4T-terminated primers. Excision activity correlated well with AZT susceptibility measurements, and was consistent with phenotypic resistance to d4T. Structural analysis of the location of the implicated amino acid substitutions revealed a coordinated effect of M41L and A62V on the positioning of the beta3-beta4 hairpin loop, which plays a key role in the resistance mechanism.


Subject(s)
Drug Resistance, Multiple, Viral , HIV Reverse Transcriptase/genetics , HIV-1/genetics , Mutagenesis, Insertional , Zidovudine/pharmacology , Adenosine Triphosphate/pharmacology , Amino Acid Sequence , Anti-HIV Agents/pharmacology , Base Sequence , Humans , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Sequence Homology, Amino Acid , Thymidine/analogs & derivatives
3.
Curr Pharm Des ; 12(15): 1811-25, 2006.
Article in English | MEDLINE | ID: mdl-16724949

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is an important target of drugs fighting HIV infection. The introduction of potent antiretroviral therapies based on the use of RT inhibitors and/or protease inhibitors has been an important achievement towards the control of AIDS. However, the development of drug resistance constitutes a major hurdle towards long-term efficacy of those therapies. With the increasing complexity of the antiretroviral regimens, novel mutational patterns conferring high-level resistance to nucleoside and nonnucleoside RT inhibitors have been identified in viral isolates. Among them, insertions and deletions in the beta3-beta4 hairpin-loop-coding region of HIV-1 RT have been identified in heavily-treated patients. Insertions of one, two or several residues appear to have a significant impact on nucleoside analogue resistance. The frequently found combination of a dipeptide insertion and thymidine analogue resistance mutations (i.e. T215Y) in the viral RT confers an ATP-dependent phosphorolytic activity that facilitates the removal of the inhibitor from primers terminated with zidovudine or stavudine. Furthermore, this mechanism appears to be relevant for resistance mediated by one amino acid-deletions appearing in combination with thymidine analogue resistance mutations. However, in other sequence contexts (i.e. in the presence of Q151M), the effects of the deletion are not fully understood. Drugs targeting the excision repair mechanism could be an important aid in the fight against multinucleoside-resistant HIV isolates bearing complex mutational patterns in their RT-coding region.


Subject(s)
HIV Reverse Transcriptase/genetics , HIV-1/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Amino Acid Sequence , Base Sequence , Drug Resistance, Viral/genetics , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/physiology , Humans , Molecular Sequence Data , Mutagenesis, Insertional/genetics , Sequence Alignment , Sequence Deletion/genetics
4.
Biochem J ; 387(Pt 1): 221-9, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15548134

ABSTRACT

Ala-114, together with Asp-113, Tyr-115 and Gln-151, form the pocket that accommodates the 3'-OH of the incoming dNTP in the HIV-1 RT (reverse transcriptase). Four mutant RTs having serine, glycine, threonine or valine instead of Ala-114 were obtained by site-directed mutagenesis. While mutants A114S and A114G retained significant DNA polymerase activity, A114T and A114V showed very low catalytic efficiency in nucleotide incorporation assays, due to their high apparent K(m) values for dNTP. Discrimination between AZTTP (3'-azido-3'-deoxythymidine triphosphate) and dTTP was not significantly affected by mutations A114S and A114G in assays carried out with heteropolymeric template/primers. However, both mutants showed decreased susceptibility to AZTTP when poly(rA)/(dT)16 was used as substrate. Steady-state kinetic analysis of the incorporation of ddNTPs compared with dNTPs showed that substituting glycine for Ala-114 produced a 5-6-fold increase in the RT's ability to discriminate against ddNTPs (including the physiologically relevant metabolites of zalcitabine and didanosine), a result that was confirmed in primer-extension assays. In contrast, A114S and A114V showed wild-type ddNTP/dNTP discrimination efficiencies. Discrimination against ribonucleotides was not affected by mutations at position 114. Misinsertion and mispair extension fidelity assays as well as determinations of G-->A mutation frequencies using a lacZ complementation assay showed that, unlike Tyr-115 or Gln-151 mutants, the fidelity of HIV-1 RT was not largely affected by substitutions of Ala-114. The role of the side-chain of Ala-114 in ddNTP/dNTP discrimination appears to be determined by its participation in van der Waals interactions with the ribose moiety of the incoming nucleotide.


Subject(s)
Alanine/genetics , Amino Acid Substitution/genetics , HIV Reverse Transcriptase/genetics , Nucleotides/genetics , Zidovudine/analogs & derivatives , DNA/biosynthesis , DNA/genetics , DNA, Viral/genetics , Dideoxynucleosides/metabolism , Dideoxynucleotides , Dinucleoside Phosphates/metabolism , Mutagenesis, Site-Directed/genetics , Mutation/genetics , Thymidine Monophosphate/metabolism , Thymine Nucleotides/metabolism , Zidovudine/metabolism
5.
J Virol ; 78(2): 1012-9, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14694133

ABSTRACT

A genetic screen based on the blue-white beta-galactosidase complementation assay designed to detect G-->A mutations arising during RNA-dependent DNA synthesis was used to compare the fidelity of mutant human immunodeficiency virus type 1 reverse transcriptases (RTs) with the mutations M230L and M230I with the wild-type enzyme, in the presence of biased deoxynucleoside triphosphate (dNTP) pools. The mutant RTs with the M230L and M230I changes were found to be 20 to 70 times less faithful than the wild-type RT in the presence of low [dCTP]/[dTTP] ratios but showed similar fidelity in assays carried out with equimolar concentrations of each nucleotide. Biased dNTP pools led to short tandem repeat deletions in the target sequence, which were also detectable with the assay. However, deletion frequencies were similar for all of the RTs tested. The reported data suggest that RT pausing due to the low dNTP levels available in the RT reaction mixture facilitates strand transfer, in a process that is not necessarily mediated by nucleotide misinsertion.


Subject(s)
DNA Primers , HIV Reverse Transcriptase/genetics , Mutation , Base Sequence , DNA Replication , DNA, Viral/biosynthesis , Deoxycytosine Nucleotides , HIV Reverse Transcriptase/metabolism , Humans , Molecular Sequence Data , Templates, Genetic , Thymine Nucleotides , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...