Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 17665, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271102

ABSTRACT

Autophagy is an intracellular recycling process that degrades harmful molecules and enables survival during starvation, with implications for diseases including dementia, cancer and atherosclerosis. Previous studies demonstrate how a limited number of transcription factors (TFs) can increase autophagy. However, this knowledge has not resulted in translation into therapy, thus, to gain understanding of more suitable targets, we utilized a systems biology approach. We induced autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells and measured temporal gene expression using RNA-seq. We observed 456 differentially expressed genes due to starvation and 285 genes due to mTOR inhibition (PFDR < 0.05 in every cell line). Pathway analyses implicated Alzheimer's and Parkinson's diseases (PFDR ≤ 0.024 in SH-SY5Y and HeLa) and amyotrophic lateral sclerosis (ALS, PFDR < 0.05 in mTOR inhibition experiments). Differential expression of the Senataxin (SETX) target gene set was predicted to activate multiple neurodegenerative pathways (PFDR ≤ 0.04). In the SH-SY5Y cells of neuronal origin, the E2F transcription family was predicted to activate Alzheimer's disease pathway (PFDR ≤ 0.0065). These exploratory analyses suggest that SETX and E2F may mediate transcriptional regulation of autophagy and further investigations into their possible role in neuro-degeneration are warranted.


Subject(s)
DNA Helicases , Multifunctional Enzymes , RNA Helicases , Humans , Amino Acids , Autophagy/genetics , DNA Helicases/genetics , HEK293 Cells , Multifunctional Enzymes/genetics , RNA Helicases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Cell Line, Tumor
2.
Brain ; 141(9): 2711-2720, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30124770

ABSTRACT

Late-onset Alzheimer's disease is the most common dementia type, yet no treatment exists to stop the neurodegeneration. Evidence from monogenic lysosomal diseases, neuronal pathology and experimental models suggest that autophagic and endolysosomal dysfunction may contribute to neurodegeneration by disrupting the degradation of potentially neurotoxic molecules such as amyloid-ß and tau. However, it is uncertain how well the evidence from rare disorders and experimental models capture causal processes in common forms of dementia, including late-onset Alzheimer's disease. For this reason, we set out to investigate if autophagic and endolysosomal genes were enriched for genetic variants that convey increased risk of Alzheimer's disease; such a finding would provide population-based support for the endolysosomal hypothesis of neurodegeneration. We quantified the collective genetic associations between the endolysosomal system and Alzheimer's disease in three genome-wide associations studies (combined n = 62 415). We used the Mergeomics pathway enrichment algorithm that incorporates permutations of the full hierarchical cascade of SNP-gene-pathway to estimate enrichment. We used a previously published collection of 891 autophagic and endolysosomal genes (denoted as AphagEndoLyso, and derived from the Lysoplex sequencing platform) as a proxy for cellular processes related to autophagy, endocytosis and lysosomal function. We also investigated a subset of 142 genes of the 891 that have been implicated in Mendelian diseases (MenDisLyso). We found that both gene sets were enriched for genetic Alzheimer's associations: an enrichment score 3.67 standard deviations from the null model (P = 0.00012) was detected for AphagEndoLyso, and a score 3.36 standard deviations from the null model (P = 0.00039) was detected for MenDisLyso. The high enrichment score was specific to the AphagEndoLyso gene set (stronger than 99.7% of other tested pathways) and to Alzheimer's disease (stronger than all other tested diseases). The APOE locus explained most of the MenDisLyso signal (1.16 standard deviations after APOE removal, P = 0.12), but the AphagEndoLyso signal was less affected (3.35 standard deviations after APOE removal, P = 0.00040). Additional sensitivity analyses further indicated that the AphagEndoLyso Gene Set contained an aggregate genetic association that comprised a combination of subtle genetic signals in multiple genes. We also observed an enrichment of Parkinson's disease signals for MenDisLyso (3.25 standard deviations) and for AphagEndoLyso (3.95 standard deviations from the null model), and a brain-specific pattern of gene expression for AphagEndoLyso in the Gene Tissue Expression Project dataset. These results provide evidence that a diffuse aggregation of genetic perturbations to the autophagy and endolysosomal system may mediate late-onset Alzheimer's risk in human populations.


Subject(s)
Alzheimer Disease/genetics , Endosomes/genetics , Lysosomes/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Apolipoproteins E/genetics , Brain/metabolism , Databases, Genetic , Endosomes/metabolism , Genetic Predisposition to Disease , Genetic Variation/genetics , Genome-Wide Association Study/methods , Humans , Lysosomes/metabolism , tau Proteins/genetics , tau Proteins/metabolism
3.
Nutrients ; 9(10)2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29065474

ABSTRACT

Anemia is a prevalent public health problem associated with nutritional and socio-economic factors that contribute to iron deficiency. To understand the complex interplay of risk factors, we investigated a prospective population sample from the Jiangsu province in China. At baseline, three-day food intake was measured for 2849 individuals (20 to 87 years of age, mean age 47 ± 14, range 20-87 years, 64% women). At a five-year follow-up, anemia status was re-assessed for 1262 individuals. The dataset was split and age-matched to accommodate cross-sectional (n = 2526), prospective (n = 837), and subgroup designs (n = 1844). We applied a machine learning framework (self-organizing map) to define four subgroups. The first two subgroups were primarily from the less affluent North: the High Fibre subgroup had a higher iron intake (35 vs. 21 mg/day) and lower anemia incidence (10% vs. 25%) compared to the Low Vegetable subgroup. However, the predominantly Southern subgroups were surprising: the Low Fibre subgroup showed a lower anemia incidence (10% vs. 27%), yet also a lower iron intake (20 vs. 28 mg/day) compared to the High Rice subgroup. These results suggest that interventions and iron intake guidelines should be tailored to regional, nutritional, and socio-economic subgroups.


Subject(s)
Anemia, Iron-Deficiency/epidemiology , Socioeconomic Factors , Adult , Aged , Aged, 80 and over , Anemia, Iron-Deficiency/blood , Body Mass Index , China/epidemiology , Cholesterol/blood , Cross-Sectional Studies , Dietary Fiber/administration & dosage , Ferritins/blood , Follow-Up Studies , Hemoglobins/metabolism , Humans , Incidence , Iron, Dietary/administration & dosage , Middle Aged , Nutrition Assessment , Nutritional Status , Oryza/chemistry , Principal Component Analysis , Prospective Studies , Risk Factors , Triglycerides/blood , Vegetables/chemistry , Young Adult
4.
Sci Rep ; 7(1): 4217, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28652620

ABSTRACT

Cohesins are vital for chromosome organisation during meiosis and mitosis. In addition to the important function in sister chromatid cohesion, these complexes play key roles in meiotic recombination, DSB repair, homologous chromosome pairing and segregation. Egg-laying mammals (monotremes) feature an unusually complex sex chromosome system, which raises fundamental questions about organisation and segregation during meiosis. We discovered a dynamic and differential accumulation of cohesins on sex chromosomes during platypus prophase I and specific reorganisation of the sex chromosome complex around a large nucleolar body. Detailed analysis revealed a differential loading of SMC3 on the chromatin and chromosomal axis of XY shared regions compared with the chromatin and chromosomal axes of asynapsed X and Y regions during prophase I. At late prophase I, SMC3 accumulation is lost from both the chromatin and chromosome axes of the asynaptic regions of the chain and resolves into subnuclear compartments. This is the first report detailing unpaired DNA specific SMC3 accumulation during meiosis in any species and allows speculation on roles for cohesin in monotreme sex chromosome organisation and segregation.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing , Meiotic Prophase I/genetics , Platypus/genetics , Sex Chromosomes/genetics , Animals , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Female , In Situ Hybridization, Fluorescence , Male , Platypus/metabolism , Cohesins
5.
BMC Biol ; 13: 106, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26652719

ABSTRACT

BACKGROUND: In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chromosome-derived autosomal retrogenes are lacking. Egg laying monotremes are the most basal mammalian lineage, feature a complex and highly differentiated XY sex chromosome system with homology to the avian sex chromosomes, and also lack autosomal retrogenes. In order to delineate the point of origin of sex chromosome specific silencing in mammals we investigated whether MSCI exists in platypus. RESULTS: Our results show that platypus sex chromosomes display only partial or transient colocalisation with a repressive histone variant linked to therian sex chromosome silencing and surprisingly lack a hallmark MSCI epigenetic signature present in other mammals. Remarkably, platypus instead feature an avian like period of general low level transcription through prophase I with the sex chromosomes and the future mammalian X maintaining association with a nucleolus-like structure. CONCLUSIONS: Our work demonstrates for the first time that in mammals meiotic silencing of sex chromosomes evolved after the divergence of monotremes presumably as a result of the differentiation of the therian XY sex chromosomes. We provide a novel evolutionary scenario on how the future therian X chromosome commenced the trajectory toward MSCI.


Subject(s)
Epigenesis, Genetic , Gene Silencing , Meiosis , Platypus/genetics , Sex Chromosomes/genetics , Animals , Evolution, Molecular , Gene Expression Profiling , Immunohistochemistry , In Situ Hybridization, Fluorescence , Male , Meiotic Prophase I
6.
Gene ; 567(2): 146-53, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-25981592

ABSTRACT

The platypus and echidna are the only extant species belonging to the clade of monotremata, the most basal mammalian lineage. The platypus is particularly well known for its mix of mammalian and reptilian characteristics and work in recent years has revealed this also extends to the genetic level. Amongst the monotreme specific features is the unique multiple sex chromosome system (5X4Y in the echidna and 5X5Y in the platypus), which forms a chain in meiosis. This raises questions about sex chromosome organisation at meiosis, including whether there has been changes in genes coding for synaptonemal complex proteins which are involved in homologous synapsis. Here we investigate the key structural components of the synaptonemal complex in platypus and echidna, synaptonemal complex proteins 1, 2 and 3 (SYCP1, SYCP2 and SYCP3). SYCP1 and SYCP2 orthologues are present, conserved and expressed in platypus testis. SYCP3 in contrast is highly diverged, but key residues required for self-association are conserved, while those required for tetramer stabilisation and DNA binding are missing. We also discovered a second SYCP3-like gene (SYCP3-like) in the same region. Comparison with the recently published Y-borne SYCP3 amino acid sequences revealed that SYCP3Y is more similar to SYCP3 in other mammals than the monotreme autosomal SYCP3. It is currently unclear if these changes in the SYCP3 gene repertoire are related to meiotic organisation of the extraordinary monotreme sex chromosome system.


Subject(s)
Nuclear Proteins/genetics , Platypus/genetics , Synaptonemal Complex/genetics , Tachyglossidae/genetics , Amino Acid Sequence , Animals , Chromosomes, Mammalian/genetics , Evolution, Molecular , Male , Molecular Sequence Data , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phylogeny , Sequence Homology, Amino Acid , Sex Chromosomes/genetics , Synaptonemal Complex/metabolism , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...