Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 2: 192, 2019.
Article in English | MEDLINE | ID: mdl-31123716

ABSTRACT

The heterogeneity of breast cancer makes current therapies challenging. Metformin, the anti-diabetic drug, has shown promising anti-cancer activities in epidemiological studies and breast cancer models. Yet, how metformin alters the normal adult breast tissue remains elusive. We demonstrate metformin intake at a clinically relevant dose impacts the hormone receptor positive (HR+) luminal cells in the normal murine mammary gland. Metformin decreases total cell number, progenitor capacity and specifically reduces DNA damage in normal HR+ luminal cells, decreases oxygen consumption rate and increases cell cycle length of luminal cells. HR+ luminal cells demonstrate the lowest levels of mitochondrial respiration and capacity to handle oxidative stress compared to the other fractions, suggesting their intrinsic susceptibility to long-term metformin exposure. Uncovering HR+ luminal cells in the normal mammary gland as the major cell target of metformin exposure could identify patients that would most benefit from repurposing this anti-diabetic drug for cancer prevention/therapy purposes.


Subject(s)
Hypoglycemic Agents/pharmacology , Mammary Glands, Animal/drug effects , Mammary Neoplasms, Animal/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Metformin/pharmacology , Animals , Apoptosis , Cell Cycle , Cell Lineage , Cell Separation , DNA Damage , Female , Flow Cytometry , Mice , Receptors, Estrogen/metabolism
2.
Commun Biol ; 1: 111, 2018.
Article in English | MEDLINE | ID: mdl-30271991

ABSTRACT

Breast cancer is the most common cancer in females. The number of years menstruating and length of an individual menstrual cycle have been implicated in increased breast cancer risk. At present, the proliferative changes within an individual reproductive cycle or variations in the estrous cycle in the normal mammary gland are poorly understood. Here we use Fucci2 reporter mice to demonstrate actively proliferating mammary epithelial cells have shorter G1 lengths, whereas more differentiated/non-proliferating cells have extended G1 lengths. We find that cells enter into the cell cycle mainly during diestrus, yet the expansion is erratic and does not take place every reproductive cycle. Single cell expression analyses feature expected proliferation markers (Birc5, Top2a), while HR+ luminal cells exhibit fluctuations of key differentiation genes (ER, Gata3) during the cell cycle. We highlight the proliferative heterogeneity occurring within the normal mammary gland during a single-estrous cycle, indicating that the mammary gland undergoes continual dynamic proliferative changes.

3.
J Cell Biol ; 217(8): 2951-2974, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29921600

ABSTRACT

The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Lineage , DNA Methylation , DNA, Neoplasm/metabolism , Epigenesis, Genetic/drug effects , Epigenomics , Humans , Mice , Mice, Transgenic , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Progesterone/pharmacology , Proteome , RNA, Neoplasm/metabolism , Risk Factors , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation
4.
Stem Cell Reports ; 4(3): 313-322, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-28447939

ABSTRACT

Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12), is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi) and luminal (CD24+CD49flo) subsets. This is accompanied by a marked reduction in CD49b+SCA-1- luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...