Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 211
Filter
1.
bioRxiv ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39314397

ABSTRACT

Neural variability, or variation in brain signals, facilitates dynamic brain responses to ongoing demands. This flexibility is important during development from childhood to young adulthood, a period characterized by rapid changes in experience. However, little is known about how variability in the engagement of recurring brain states changes during development. Such investigations would require the continuous assessment of multiple brain states concurrently. Here, we leverage a new computational framework to study state engagement variability (SEV) during development. A consistent pattern of SEV changing with age was identified across cross-sectional and longitudinal datasets (N>3000). SEV developmental trajectories stabilize around mid-adolescence, with timing varying by sex and brain state. SEV successfully predicts executive function (EF) in youths from an independent dataset. Worse EF is further linked to alterations in SEV development. These converging findings suggest SEV changes over development, allowing individuals to flexibly recruit various brain states to meet evolving needs.

3.
Proc Natl Acad Sci U S A ; 121(31): e2403212121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042688

ABSTRACT

Some mental health problems such as depression and anxiety are more common in females, while others such as autism and attention deficit/hyperactivity (AD/H) are more common in males. However, the neurobiological origins of these sex differences are poorly understood. Animal studies have shown substantial sex differences in neuronal and glial cell structure, while human brain imaging studies have shown only small differences, which largely reflect overall body and brain size. Advanced diffusion MRI techniques can be used to examine intracellular, extracellular, and free water signal contributions and provide unique insights into microscopic cellular structure. However, the extent to which sex differences exist in these metrics of subcortical gray matter structures implicated in psychiatric disorders is not known. Here, we show large sex-related differences in microstructure in subcortical regions, including the hippocampus, thalamus, and nucleus accumbens in a large sample of young adults. Unlike conventional T1-weighted structural imaging, large sex differences remained after adjustment for age and brain volume. Further, diffusion metrics in the thalamus and amygdala were associated with depression, anxiety, AD/H, and antisocial personality problems. Diffusion MRI may provide mechanistic insights into the origin of sex differences in behavior and mental health over the life course and help to bridge the gap between findings from experimental, epidemiological, and clinical mental health research.


Subject(s)
Brain , Sex Characteristics , Humans , Female , Male , Adult , Brain/diagnostic imaging , Brain/pathology , Mental Health , Young Adult , Diffusion Magnetic Resonance Imaging , Adolescent , Hippocampus/diagnostic imaging , Hippocampus/pathology , Thalamus/diagnostic imaging , Nucleus Accumbens/diagnostic imaging , Depression/diagnostic imaging , Depression/pathology , Anxiety/diagnostic imaging
4.
Dev Cogn Neurosci ; 67: 101393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838435

ABSTRACT

An extensive literature shows that race information can impact cognitive performance. Two key findings include an attentional bias to Black racial cues in U.S. samples and diminished recognition of other-race faces compared to same-race faces in predominantly White adult samples. Yet face stimuli are increasingly used in psychological research often unrelated to race (Conley et al., 2018) or without consideration for how race information may influence cognitive performance, especially among developmental participants from different racial groups. In the current study we used open-access data from the Adolescent Brain Cognitive DevelopmentSM (ABCD) Study® 4.0.1 release to test for developmentally similar other- and same-race effects of Black and White face stimuli on attention, working memory, and recognition memory in 9- and 10-year-old Black and White children (n=5,659) living in the U.S. Black and White children showed better performance when attending to Black versus White faces. We also show an advantage in recognition memory of same-race compared to other-race faces in White children that did not generalize to Black children. Together the findings highlight how race information, even when irrelevant to an experiment, may indirectly lead to misinterpretation of group differences in cognitive performance in children of different racial backgrounds.


Subject(s)
Attention , Memory, Short-Term , Recognition, Psychology , Child , Female , Humans , Male , Black or African American/psychology , Cognition , White/psychology
5.
J Cogn Neurosci ; 36(3): 415-434, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38060253

ABSTRACT

Nearly 50 years of research has focused on faces as a special visual category, especially during development. Yet it remains unclear how spatial patterns of neural similarity of faces and places relate to how information processing supports subsequent recognition of items from these categories. The current study uses representational similarity analysis and functional imaging data from 9- and 10-year-old youth during an emotional n-back task from the Adolescent Brain and Cognitive Development Study 3.0 data release to relate spatial patterns of neural similarity during working memory to subsequent out-of-scanner performance on a recognition memory task. Specifically, we examine how similarities in representations within face categories (neutral, happy, and fearful faces) and representations between visual categories (faces and places) relate to subsequent recognition memory of these visual categories. Although working memory performance was higher for faces than places, subsequent recognition memory was greater for places than faces. Representational similarity analysis revealed category-specific patterns in face-and place-sensitive brain regions (fusiform gyrus, parahippocampal gyrus) compared with a nonsensitive visual region (pericalcarine cortex). Similarity within face categories and dissimilarity between face and place categories in the parahippocampus was related to better recognition of places from the n-back task. Conversely, in the fusiform, similarity within face categories and their relative dissimilarity from places was associated with better recognition of new faces, but not old faces. These findings highlight how the representational distinctiveness of visual categories influence what information is subsequently prioritized in recognition memory during development.


Subject(s)
Memory, Short-Term , Recognition, Psychology , Adolescent , Humans , Child , Brain , Cerebral Cortex , Emotions , Brain Mapping , Magnetic Resonance Imaging , Pattern Recognition, Visual
6.
J Neurosci ; 44(6)2024 02 07.
Article in English | MEDLINE | ID: mdl-38148152

ABSTRACT

The functional connectome supports information transmission through the brain at various spatial scales, from exchange between broad cortical regions to finer-scale, vertex-wise connections that underlie specific information processing mechanisms. In adults, while both the coarse- and fine-scale functional connectomes predict cognition, the fine scale can predict up to twice the variance as the coarse-scale functional connectome. Yet, past brain-wide association studies, particularly using large developmental samples, focus on the coarse connectome to understand the neural underpinnings of individual differences in cognition. Using a large cohort of children (age 9-10 years; n = 1,115 individuals; both sexes; 50% female, including 170 monozygotic and 219 dizygotic twin pairs and 337 unrelated individuals), we examine the reliability, heritability, and behavioral relevance of resting-state functional connectivity computed at different spatial scales. We use connectivity hyperalignment to improve access to reliable fine-scale (vertex-wise) connectivity information and compare the fine-scale connectome with the traditional parcel-wise (coarse scale) functional connectomes. Though individual differences in the fine-scale connectome are more reliable than those in the coarse-scale, they are less heritable. Further, the alignment and scale of connectomes influence their ability to predict behavior, whereby some cognitive traits are equally well predicted by both connectome scales, but other, less heritable cognitive traits are better predicted by the fine-scale connectome. Together, our findings suggest there are dissociable individual differences in information processing represented at different scales of the functional connectome which, in turn, have distinct implications for heritability and cognition.


Subject(s)
Connectome , Humans , Male , Adult , Child , Female , Reproducibility of Results , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cognition
8.
Brain Imaging Behav ; 17(5): 461-470, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37145386

ABSTRACT

Pediatric obesity is a major public health concern. Genetic susceptibility and increased availability of energy-dense food are known risk factors for obesity. However, the extent to which these factors jointly bias behavior and neural circuitry towards increased adiposity in children remains unclear. While undergoing fMRI, 108 children (ages 5-11y) performed a food-specific go/no-go task. Participants were instructed to either respond ("go") or inhibit responding ("no-go") to images of food or toys. Half of the runs depicted high-calorie foods (e.g., pizza) whereas the other half depicted low-calorie foods (e.g., salad). Children were also genotyped for a DNA polymorphism associated with energy intake and obesity (FTO rs9939609) to examine the influence of obesity risk on behavioral and brain responses to food. Participants demonstrated differences in behavioral sensitivity to high- and low-calorie food images depending on task demands. Participants were slower but more accurate at detecting high- (relative to low-) calorie foods when responding to a neutral stimulus (i.e., toys) and worse at detecting toys when responding to high-calorie foods. Inhibition failures were accompanied by salience network activity (anterior insula, dorsal anterior cingulate cortex), which was driven by false alarms to food images. Children at a greater genetic risk for obesity (dose-dependent model of the FTO genotype) demonstrated pronounced brain and behavioral relationships such that genetic risk was associated with heightened sensitivity to high-calorie food images and increased anterior insula activity. These findings suggest that high-calorie foods may be particularly salient to children at risk for developing eating habits that promote obesity.


Subject(s)
Cues , Magnetic Resonance Imaging , Humans , Child , Obesity/diagnostic imaging , Obesity/genetics , Feeding Behavior , Neuroimaging , Food , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
9.
Cogn Affect Behav Neurosci ; 23(3): 944-956, 2023 06.
Article in English | MEDLINE | ID: mdl-36732466

ABSTRACT

Race is a social construct that contributes to group membership and heightens emotional arousal in intergroup contexts. Little is known about how emotional arousal, specifically uncertain threat, influences behavior and brain processes in response to race information. We investigated the effects of experimentally manipulated uncertain threat on impulsive actions to Black versus White faces in a community sample (n = 106) of Black and White adults. While undergoing fMRI, participants performed an emotional go/no-go task under three conditions of uncertainty: 1) anticipation of an uncertain threat (i.e., unpredictable loud aversive sound); 2) anticipation of an uncertain reward (i.e., unpredictable receipt of money); and 3) no anticipation of an uncertain event. Representational similarity analysis was used to examine the neural representations of race information across functional brain networks between conditions of uncertainty. Participants-regardless of their own race-showed greater impulsivity and neural dissimilarity in response to Black versus White faces across all functional brain networks in conditions of uncertain threat relative to other conditions. This pattern of greater neural dissimilarity under threat was enhanced in individuals with high implicit racial bias. Our results illustrate the distinct and important influence of uncertain threat on global differentiation in how race information is represented in the brain, which may contribute to racially biased behavior.


Subject(s)
Brain , Emotions , Impulsive Behavior , Adult , Humans , Black People , Brain/diagnostic imaging , Brain/physiology , Uncertainty , White People
10.
Res Child Adolesc Psychopathol ; 51(6): 789-803, 2023 06.
Article in English | MEDLINE | ID: mdl-36705774

ABSTRACT

Neighborhood threats can increase risk for externalizing problems, including aggressive, oppositional, and delinquent behavior. Yet, there is substantial variability in how youth respond to neighborhood threats. Difficulty with cognitive functioning, particularly in the face of emotional information, may increase risk for externalizing in youth who live in neighborhoods with higher threats. However, little research has examined: 1) associations between neighborhood threats and executive networks involved in cognitive functioning or 2) whether executive networks may amplify risk for externalizing in the context of neighborhood threats. Further, most research on neighborhood threats does not account for youth's experiences in other social contexts. Utilizing the large, sociodemographically diverse cohort of youth (ages 9-10) included in the Adolescent Brain Cognitive DevelopmentSM Study, we identified four latent profiles of youth based on threats in their neighborhoods, families, and schools: low threat in all contexts, elevated family threat, elevated neighborhood threat, and elevated threat in all contexts. The elevated neighborhood threat and elevated all threat profiles showed lower behavioral performance on an emotional n-back task relative to low threat and elevated family threat profiles. Lower behavioral performance in the elevated neighborhood threat profile specifically was paralleled by lower executive network activity during a cognitive challenge. Moreover, among youth with lower executive network activity, higher probability of membership in the elevated neighborhood threat profile was associated with higher externalizing. Together, these results provide evidence that interactions between threats that are concentrated in youth's neighborhoods and attenuated executive network function may contribute to risk for externalizing problems.


Subject(s)
Aggression , Social Environment , Humans , Adolescent , Aggression/psychology , Schools
11.
Learn Mem ; 29(8): 223-233, 2022 08.
Article in English | MEDLINE | ID: mdl-35953104

ABSTRACT

Working memory and recognition memory develop across adolescence, but the relationship between them is not fully understood. We investigated associations between n-back task performance and subsequent recognition memory in a community sample (8-30 yr, n = 150) using tasks from the Adolescent Brain Cognitive Development Study (ABCD Study) to cross-sectionally assess memory in an age range that will be sampled longitudinally. We added a 24-h delay condition to assess long-term recognition. Overall working memory, immediate and long-term recognition performance peaked in adolescence. Age effects in recognition memory varied by items (old targets, old distractors, and new items) and delay (0 and 24 h). For immediate recognition, accuracy was higher for targets and new items than for distractors, with accuracy for targets peaking in adulthood and accuracy for new items peaking during adolescence. For long-term recognition, adolescents' accuracy was higher for targets than distractors, while adults showed similarly high accuracy for targets and distractors and children showed low accuracy for both. This pattern appeared to be specific to recognition of items from the high working memory load condition. The results suggest that working memory may facilitate long-term recognition of task-relevant over irrelevant items and may benefit the detection of new information during adolescence.


Subject(s)
Memory, Short-Term , Recognition, Psychology , Adolescent , Adult , Brain , Child , Cognition , Humans , Memory, Long-Term
12.
Neuroimage ; 255: 119215, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35436615

ABSTRACT

As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.


Subject(s)
Brain , Neuroimaging , Adolescent , Adult , Brain/physiology , Humans , Magnetic Resonance Imaging/methods , Memory, Short-Term/physiology , Reproducibility of Results
13.
J Adolesc Health ; 70(6): 961-969, 2022 06.
Article in English | MEDLINE | ID: mdl-35248457

ABSTRACT

PURPOSE: Pediatric obesity is a growing public health concern. Previous work has observed diet to impact nucleus accumbens (NAcc) inflammation in rodents, measured by the reactive proliferation of glial cells. Recent work in humans has demonstrated a relationship between NAcc cell density-a proxy for neuroinflammation-and weight gain in youth; however, the directionality of this relationship in the developing brain and association with diet remains unknown. METHODS: Waist circumference (WC) and NAcc cell density were collected in a large cohort of children (n > 2,000) participating in the Adolescent Brain Cognitive Development (ABCD) Study (release 3.0) at baseline (9-10 y) and at a Year 2 follow-up (11-12 y). Latent change score modeling (LCSM) was used to disentangle contributions of baseline measures to two-year changes in WC percentile and NAcc cellularity. In addition, the role of NAcc cellularity in mediating the relationship between diet and WC percentile was assessed using dietary intake data collected at Year 2. RESULTS: LCSM indicates that baseline WC percentile influences change in NAcc cellularity and that baseline NAcc cell density influences change in WC percentile. NAcc cellularity was significantly associated with WC percentile at Year 2 and mediated the relationship between dietary fat consumption and WC percentile. CONCLUSIONS: These results implicate a vicious cycle whereby NAcc cell density biases longitudinal changes in WC percentile and vice versa. Moreover, NAcc cell density may mediate the relationship between diet and weight gain in youth. These findings suggest that diet-induced inflammation of reward circuitry may lead to behavioral changes that further contribute to weight gain.


Subject(s)
Nucleus Accumbens , Pediatric Obesity , Adolescent , Body Mass Index , Child , Humans , Inflammation , Waist Circumference , Weight Gain
14.
J Cogn Neurosci ; 34(10): 1810-1841, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35104356

ABSTRACT

Exposure to socioeconomic disadvantages (SED) can have negative impacts on mental health, yet SED are a multifaceted construct and the precise processes by which SED confer deleterious effects are less clear. Using a large and diverse sample of preadolescents (ages 9-10 years at baseline, n = 4038, 49% female) from the Adolescent Brain Cognitive Development Study, we examined associations among SED at both household (i.e., income-needs and material hardship) and neighborhood (i.e., area deprivation and neighborhood unsafety) levels, frontoamygdala resting-state functional connectivity, and internalizing symptoms at baseline and 1-year follow-up. SED were positively associated with internalizing symptoms at baseline and indirectly predicted symptoms 1 year later through elevated symptoms at baseline. At the household level, youth in households characterized by higher disadvantage (i.e., lower income-to-needs ratio) exhibited more strongly negative frontoamygdala coupling, particularly between the bilateral amygdala and medial OFC (mOFC) regions within the frontoparietal network. Although more strongly positive amygdala-mOFC coupling was associated with higher levels of internalizing symptoms at baseline and 1-year follow-up, it did not mediate the association between income-to-needs ratio and internalizing symptoms. However, at the neighborhood level, amygdala-mOFC functional coupling moderated the effect of neighborhood deprivation on internalizing symptoms. Specifically, higher neighborhood deprivation was associated with higher internalizing symptoms for youth with more strongly positive connectivity, but not for youth with more strongly negative connectivity, suggesting a potential buffering effect. Findings highlight the importance of capturing multilevel socioecological contexts in which youth develop to identify youth who are most likely to benefit from early interventions.


Subject(s)
Amygdala , Residence Characteristics , Adolescent , Amygdala/diagnostic imaging , Brain/abnormalities , Child , Cleft Lip , Cleft Palate , Female , Humans , Male , Socioeconomic Factors
15.
J Neurosci Res ; 100(3): 731-743, 2022 03.
Article in English | MEDLINE | ID: mdl-34496065

ABSTRACT

The endocannabinoid system is an important regulator of emotional responses such as fear, and a number of studies have implicated endocannabinoid signaling in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is associated with enhanced endocannabinoid signaling in the brain, has been identified across species as a potential protective factor from anxiety. In particular, adults with the variant FAAH 385A allele have greater fronto-amygdala connectivity and lower anxiety symptoms. Whether broader network-level differences in connectivity exist, and when during development this neural phenotype emerges, remains unknown and represents an important next step in understanding how the FAAH C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain Cognitive Development Study℠ (10.04 ± 0.62 years old; 44.23% female, 55.77% male) and a cross-validated, data-driven approach to examine associations between genetic variation and large-scale resting-state brain networks. Our findings revealed a distributed brain network, comprising functional connections that were both significantly greater (95% CI for p values = [<0.001, <0.001]) and lesser (95% CI for p values = [0.006, <0.001]) in A-allele carriers relative to non-carriers. Furthermore, there was a significant interaction between genotype and the summarized connectivity of functional connections that were greater in A-allele carriers, such that non-carriers with connectivity more similar to A-allele carriers (i.e., greater connectivity) had lower anxiety symptoms (ß = -0.041, p = 0.030). These findings provide novel evidence of network-level changes in neural connectivity associated with genetic variation in endocannabinoid signaling and suggest that genotype-associated neural differences may emerge at a younger age than genotype-associated differences in anxiety.


Subject(s)
Amygdala , Endocannabinoids , Adolescent , Amygdala/physiology , Anxiety/genetics , Anxiety Disorders , Endocannabinoids/genetics , Female , Humans , Magnetic Resonance Imaging , Male , Polymorphism, Single Nucleotide/genetics
16.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: mdl-34607958

ABSTRACT

In 2020, individuals of all ages engaged in demonstrations condemning police brutality and supporting the Black Lives Matter (BLM) movement. Research that used parent reports and trends commented on in popular media suggested that adolescents under 18 had become increasingly involved in this movement. In the first large-scale quantitative survey of adolescents' exposure to BLM demonstrations, 4,970 youth (meanage = 12.88 y) across the United States highlighted that they were highly engaged, particularly with media, and experienced positive emotions when exposed to the BLM movement. In addition to reporting strong engagement and positive emotions related to BLM demonstrations, Black adolescents in particular reported higher negative emotions when engaging with different types of media and more exposure to violence during in-person BLM demonstrations. Appreciating youth civic engagement, while also providing support for processing complex experiences and feelings, is important for the health and welfare of young people and society.


Subject(s)
Black or African American/psychology , Exposure to Violence/psychology , Mass Gatherings , Politics , Social Participation/psychology , Adolescent , Child , Emotions , Female , Humans , Male , Police , Social Media/statistics & numerical data , Surveys and Questionnaires , United States
17.
Drug Alcohol Depend ; 227: 108946, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34392051

ABSTRACT

BACKGROUND: The Adolescent Brain Cognitive Development ™ Study (ABCD Study®) is an open-science, multi-site, prospective, longitudinal study following over 11,800 9- and 10-year-old youth into early adulthood. The ABCD Study aims to prospectively examine the impact of substance use (SU) on neurocognitive and health outcomes. Although SU initiation typically occurs during teen years, relatively little is known about patterns of SU in children younger than 12. METHODS: This study aims to report the detailed ABCD Study® SU patterns at baseline (n = 11,875) in order to inform the greater scientific community about cohort's early SU. Along with a detailed description of SU, we ran mixed effects regression models to examine the association between early caffeine and alcohol sipping with demographic factors, externalizing symptoms and parental history of alcohol and substance use disorders (AUD/SUD). PRIMARY RESULTS: At baseline, the majority of youth had used caffeine (67.6 %) and 22.5 % reported sipping alcohol (22.5 %). There was little to no reported use of other drug categories (0.2 % full alcohol drink, 0.7 % used nicotine, <0.1 % used any other drug of abuse). Analyses revealed that total caffeine use and early alcohol sipping were associated with demographic variables (p's<.05), externalizing symptoms (caffeine p = 0002; sipping p = .0003), and parental history of AUD (sipping p = .03). CONCLUSIONS: ABCD Study participants aged 9-10 years old reported caffeine use and alcohol sipping experimentation, but very rare other SU. Variables linked with early childhood alcohol sipping and caffeine use should be examined as contributing factors in future longitudinal analyses examining escalating trajectories of SU in the ABCD Study cohort.


Subject(s)
Substance-Related Disorders , Adolescent , Adult , Brain , Child , Child, Preschool , Cognition , Humans , Longitudinal Studies , Prospective Studies , Substance-Related Disorders/epidemiology
18.
Nat Neurosci ; 24(8): 1176-1186, 2021 08.
Article in English | MEDLINE | ID: mdl-34099922

ABSTRACT

The Adolescent Brain Cognitive Development (ABCD) Study® is a 10-year longitudinal study of children recruited at ages 9 and 10. A battery of neuroimaging tasks are administered biennially to track neurodevelopment and identify individual differences in brain function. This study reports activation patterns from functional MRI (fMRI) tasks completed at baseline, which were designed to measure cognitive impulse control with a stop signal task (SST; N = 5,547), reward anticipation and receipt with a monetary incentive delay (MID) task (N = 6,657) and working memory and emotion reactivity with an emotional N-back (EN-back) task (N = 6,009). Further, we report the spatial reproducibility of activation patterns by assessing between-group vertex/voxelwise correlations of blood oxygen level-dependent (BOLD) activation. Analyses reveal robust brain activations that are consistent with the published literature, vary across fMRI tasks/contrasts and slightly correlate with individual behavioral performance on the tasks. These results establish the preadolescent brain function baseline, guide interpretation of cross-sectional analyses and will enable the investigation of longitudinal changes during adolescent development.


Subject(s)
Brain/physiology , Adolescent , Adolescent Development/physiology , Child , Female , Humans , Magnetic Resonance Imaging , Male , Reference Values
19.
Cogn Affect Behav Neurosci ; 21(3): 625-638, 2021 06.
Article in English | MEDLINE | ID: mdl-33942274

ABSTRACT

The race of an individual is a salient physical feature that is rapidly processed by the brain and can bias our perceptions of others. How the race of others explicitly impacts our actions toward them during intergroup contexts is not well understood. In the current study, we examined how task-irrelevant race information influences cognitive control in a go/no-go task in a community sample of Black (n = 54) and White (n = 51) participants. We examined the neural correlates of behavioral effects using functional magnetic resonance imaging and explored the influence of implicit racial attitudes on brain-behavior associations. Both Black and White participants showed more cognitive control failures, as indexed by dprime, to Black versus White faces, despite the irrelevance of race to the task demands. This behavioral pattern was paralleled by greater activity to Black faces in the fusiform face area, implicated in processing face and in-group information, and lateral orbitofrontal cortex, associated with resolving stimulus-response conflict. Exploratory brain-behavior associations suggest different patterns in Black and White individuals. Black participants exhibited a negative association between fusiform activity and response time during impulsive errors to Black faces, whereas White participants showed a positive association between lateral OFC activity and cognitive control performance to Black faces when accounting for implicit racial associations. Together our findings propose that attention to race information is associated with diminished cognitive control that may be driven by different mechanisms for Black and White individuals.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Cognition , Humans , Reaction Time
SELECTION OF CITATIONS
SEARCH DETAIL