Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 16(4): 40-51, 2015 07 08.
Article in English | MEDLINE | ID: mdl-26218996

ABSTRACT

VMAT is an important tool in the treatment of head and neck cancers, many of which also require treatment to the supraclavicular lymph nodes. However, full VMAT arcs treating this nodal region necessarily cause entrance beam to pass through patients' shoulders. Thus, interfractional variations in shoulder position may cause unwanted dose perturbations. To assess this possibility, six patients undergoing treatment at our institution for head and neck cancers with associated supraclavicular lymph node treatment were imaged with in-room CT-on-rails during the course of their treatments. This allowed for the establishment of a true record of the actual shoulder position during selected treatment fractions. Then, a full VMAT plan and a plan with VMAT arcs superior to the shoulder and a static anteroposterior field inferiorly were copied onto the patients' weekly image sets. The average one-dimensional shoulder motion was generally within 10 mm of the simulated position, with some notable exceptions. The standard deviation in week-to-week shoulder position relative to simulation was 4.3 mm and 4.2 mm in the SI and AP dimensions, respectively. The average nodal target mean dose across all fractions sampled was within 5% of planned for all patients and both plans. Similarly, the average D95 for the nodal target was within 5% of planned across all fractions sampled, with the single exception of the full VMAT plan for one patient. In most cases, the standard deviation in both target mean dose and D95 was smaller with the VMAT+static AP field plan than it was with the full VMAT plan.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Immobilization/methods , Radiation Injuries/prevention & control , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Shoulder/radiation effects , Tomography, X-Ray Computed/methods , Head and Neck Neoplasms/pathology , Humans , Image Interpretation, Computer-Assisted/methods , Radiotherapy Dosage
2.
Med Phys ; 40(11): 112102, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24320455

ABSTRACT

PURPOSE: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. METHODS: The authors designed and built an 8 × 8 × 10 cm(3) prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all (192)Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian (192)Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. RESULTS: The linearity correction factor was kL = (-9.43 × 10(-5) × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using (60)Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian (192)Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023-1.028], and for the Varian source, it was 1.000 (95% CI = 0.995-1.005). Variations in lateral source positioning up to 0.8 mm and distal∕proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ± 5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). CONCLUSIONS: The authors have created an OSLD-based (192)Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ± 5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Iridium Radioisotopes/chemistry , Neoplasms/radiotherapy , Optically Stimulated Luminescence Dosimetry/methods , Clinical Trials as Topic , Cobalt Radioisotopes/chemistry , Humans , Optics and Photonics , Phantoms, Imaging , Radiation Dosage , Radiometry/methods , Radiotherapy Dosage , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...