Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clim Dyn ; 53(12): 7363-7380, 2019.
Article in English | MEDLINE | ID: mdl-31929687

ABSTRACT

Systematic error and forecast skill for temperature and precipitation in two regions of Southern Asia are investigated using hindcasts initialized May 1 from the North American Multi-Model Ensemble. We focus on two contiguous but geographically and dynamically diverse regions: the Extended Indian Monsoon Rainfall (70-100E, 10-30 N) and the nearby mountainous area of Pakistan and Afghanistan (60-75E, 23-39 N). Forecast skill is assessed using the Sign test framework, a rigorous statistical method that can be applied to non-Gaussian variables such as precipitation and to different ensemble sizes without introducing bias. We find that models show significant systematic error in both precipitation and temperature for both regions. The multi-model ensemble mean (MMEM) consistently yields the lowest systematic error and the highest forecast skill for both regions and variables. However, we also find that the MMEM consistently provides a statistically significant increase in skill over climatology only in the first month of the forecast. While the MMEM tends to provide higher overall skill than climatology later in the forecast, the differences are not significant at the 95% level. We also find that MMEMs constructed with a relatively small number of ensemble members per model can equal or outperform MMEMs constructed with more members in skill. This suggests some ensemble members either provide no contribution to overall skill or even detract from it.

2.
J Hydrometeorol ; 19(No 2): 375-392, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29714354

ABSTRACT

We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

3.
PLoS One ; 12(3): e0172355, 2017.
Article in English | MEDLINE | ID: mdl-28253325

ABSTRACT

A substantial body of work supports a teleconnection between the El Niño-Southern Oscillation (ENSO) and cholera incidence in Bangladesh. In particular, high positive anomalies during the winter (Dec-Feb) in sea surface temperatures (SST) in the tropical Pacific have been shown to exacerbate the seasonal outbreak of cholera following the monsoons from August to November. Climate studies have indicated a role of regional precipitation over Bangladesh in mediating this long-distance effect. Motivated by this previous evidence, we took advantage of the strong 2015-2016 El Niño event to evaluate the predictability of cholera dynamics for the city in recent times based on two transmission models that incorporate SST anomalies and are fitted to the earlier surveillance records starting in 1995. We implemented a mechanistic temporal model that incorporates both epidemiological processes and the effect of ENSO, as well as a previously published statistical model that resolves space at the level of districts (thanas). Prediction accuracy was evaluated with "out-of-fit" data from the same surveillance efforts (post 2008 and 2010 for the two models respectively), by comparing the total number of cholera cases observed for the season to those predicted by model simulations eight to twelve months ahead, starting in January each year. Although forecasts were accurate for the low cholera risk observed for the years preceding the 2015-2016 El Niño, the models also predicted a high probability of observing a large outbreak in fall 2016. Observed cholera cases up to Oct 2016 did not show evidence of an anomalous season. We discuss these predictions in the context of regional and local climate conditions, which show that despite positive regional rainfall anomalies, rainfall and inundation in Dhaka remained low. Possible explanations for these patterns are given together with future implications for cholera dynamics and directions to improve their prediction for the city.


Subject(s)
Cholera/epidemiology , Climate , Forecasting , Bangladesh/epidemiology , Humans , Seasons , Urban Population
4.
PLoS One ; 9(9): e107223, 2014.
Article in English | MEDLINE | ID: mdl-25229494

ABSTRACT

BACKGROUND: Comparative studies of the associations between different infectious diseases and climate variability, such as the El Niño-Southern Oscillation, are lacking. Diarrheal illnesses, particularly cholera and shigellosis, provide an important opportunity to apply a comparative approach. Cholera and shigellosis have significant global mortality and morbidity burden, pronounced differences in transmission pathways and pathogen ecologies, and there is an established climate link with cholera. In particular, the specific ecology of Vibrio cholerae is often invoked to explain the sensitivity of that disease to climate. METHODS AND FINDINGS: The extensive surveillance data of the International Center for Diarrheal Disease Research, Bangladesh are used here to revisit the known associations between cholera and climate, and to address their similarity to previously unexplored patterns for shigellosis. Monthly case data for both the city of Dhaka and a rural area known as Matlab are analyzed with respect to their association with El Niño and flooding. Linear correlations are examined between flooding and cumulative cases, as well as for flooding and El Niño. Rank-correlation maps are also computed between disease cases in the post-monsoon epidemic season and sea surface temperatures in the Pacific. Similar climate associations are found for both diseases and both locations. Increased cases follow increased monsoon flooding and increased sea surface temperatures in the preceding winter corresponding to an El Niño event. CONCLUSIONS: The similarity in association patterns suggests a systemic breakdown in population health with changing environmental conditions, in which climate variability acts primarily through increasing the exposure risk of the human population. We discuss these results in the context of the on-going debate on the relative importance of the environmental reservoir vs. secondary transmission, as well as the implications for the use of El Niño as an early indicator of flooding and enteric disease risk.


Subject(s)
Cholera/epidemiology , Climate , Dysentery, Bacillary/epidemiology , Bangladesh/epidemiology , Disease Outbreaks , Floods , Humans , Population Surveillance , Seasons , Seawater , Temperature , Vibrio cholerae
SELECTION OF CITATIONS
SEARCH DETAIL
...