Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 361: 121234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805958

ABSTRACT

Agricultural and urban management practices (MPs) are primarily designed and implemented to reduce nutrient and sediment concentrations in streams. However, there is growing interest in determining if MPs produce any unintended positive effects, or co-benefits, to instream biological and habitat conditions. Identifying co-benefits is challenging though because of confounding variables (i.e., those that affect both where MPs are applied and stream biota), which can be accounted for in novel causal inference approaches. Here, we used two causal inference approaches, propensity score matching (PSM) and Bayesian network learning (BNL), to identify potential MP co-benefits in the Chesapeake Bay watershed portion of Maryland, USA. Specifically, we examined how MPs may modify instream conditions that impact fish and macroinvertebrate indices of biotic integrity (IBI) and functional and taxonomic endpoints. We found evidence of positive unintended effects of MPs for both benthic macroinvertebrates and fish indicated by higher IBI scores and specific endpoints like the number of scraper macroinvertebrate taxa and lithophilic spawning fish taxa in a subset of regions. However, our results also suggest MPs have negative unintended effects, especially on sensitive benthic macroinvertebrate taxa and key instream habitat and water quality metrics like specific conductivity. Overall, our results suggest MPs offer co-benefits in some regions and catchments with largely degraded conditions but can have negative unintended effects in some regions, especially in catchments with good biological conditions. We suggest the number and types of MPs drove these mixed results and highlight carefully designed MP implementation that incorporates instream biological data at the catchment scale could facilitate co-benefits to instream biological conditions. Our study underscores the need for more research on identifying effects of individual MP types on instream biological and habitat conditions.


Subject(s)
Agriculture , Bayes Theorem , Ecosystem , Fishes , Agriculture/methods , Animals , Rivers , Maryland , Environmental Monitoring/methods , Invertebrates
2.
Eur J Public Health ; 34(1): 101-106, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37968234

ABSTRACT

BACKGROUND: This study investigated the possible mediating role of fear-of-failure between educational expectations and adolescent stress-related complaints with a specific focus on gender differences among Swedish adolescents, and related these findings more broadly to school-related demands and stress-related complaints. METHODS: A total of N = 5504 Swedish adolescents (Mage = 15 years, SD = 0.0 years, 50.2% girls) were drawn from the 2018 Swedish Programme for International Student Assessment study for our investigation. We used structural equation models to explore if fear-of-failure mediates the relationship between educational expectations and negative affect, with a specific focus on gender differences. Educational expectations were utilized in the measurement model. Fear-of-failure was constructed as a latent mediating variable. Negative affect was constructed as a latent variable and utilized as an outcome variable. We subsequently undertook bootstrapping tests of indirect effects and non-linear comparisons of indirect effects to assess the reliability of the results. RESULTS: Fear-of-failure partially mediated the association between educational expectations and negative affect (39%). Our gender-specific structural equation model demonstrated that this relationship was more pronounced for girls, suggesting girls are more vulnerable to negative affect as a result of experiencing higher levels of fear of failing. CONCLUSIONS: The findings suggest that fear-of-failure partially explains the association between educational expectations and negative affect and that this association is more pronounced for girls. This study provides insights into better understanding adolescent stress-related complaints, and the differential role fear of failing has in regards to gender.


Subject(s)
Fear , Motivation , Female , Humans , Adolescent , Male , Sweden/epidemiology , Latent Class Analysis , Reproducibility of Results
4.
Environ Manage ; 70(6): 926-949, 2022 12.
Article in English | MEDLINE | ID: mdl-36207606

ABSTRACT

Biological communities in freshwater streams are often impaired by multiple stressors (e.g., flow or water quality) originating from anthropogenic activities such as urbanization, agriculture, or energy extraction. Restoration efforts in the Chesapeake Bay watershed, USA seek to improve biological conditions in 10% of freshwater tributaries and to protect the biological integrity of existing healthy watersheds. To achieve these goals, resource managers need to better understand which stressors are most likely driving biological impairment. Our study addressed this knowledge gap through two approaches: 1) reviewing and synthesizing published multi-stressor studies, and 2) examining 303(d) listed impairments linked to biological impairment as identified by jurisdiction regulatory agencies (the states within the watershed and the District of Columbia). Results identified geomorphology (i.e., physical habitat), salinity, and toxic contaminants as important for explaining variability in benthic community metrics in the literature review. Geomorphology (i.e., physical habitat and sediment), salinity, and nutrients were the most reported stressors in the jurisdictional impairment analysis. Salinity is likely a major stressor in urban and mining settings, whereas geomorphology was commonly reported in agricultural settings. Toxic contaminants, such as pesticides, were rarely measured; more research is needed to quantify the extent of their effects in the region. Flow alteration was also highlighted as an important urban stressor in the literature review but was rarely measured in the literature or reported by jurisdictions as a cause of impairment. These results can be used to prioritize stressor monitoring by managers, and to improve stressor identification methods for identifying causes of biological impairment.


Subject(s)
Environmental Monitoring , Rivers , Animals , Environmental Monitoring/methods , Bays , Fresh Water , Water Quality , Ecosystem , Invertebrates
5.
J Environ Manage ; 322: 116068, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36058075

ABSTRACT

Anthropogenic alterations have resulted in widespread degradation of stream conditions. To aid in stream restoration and management, baseline estimates of conditions and improved explanation of factors driving their degradation are needed. We used random forests to model biological conditions using a benthic macroinvertebrate index of biotic integrity for small, non-tidal streams (upstream area ≤200 km2) in the Chesapeake Bay watershed (CBW) of the mid-Atlantic coast of North America. We utilized several global and local model interpretation tools to improve average and site-specific model inferences, respectively. The model was used to predict condition for 95,867 individual catchments for eight periods (2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019). Predicted conditions were classified as Poor, FairGood, or Uncertain to align with management needs and individual reach lengths and catchment areas were summed by condition class for the CBW for each period. Global permutation and local Shapley importance values indicated percent of forest, development, and agriculture in upstream catchments had strong impacts on predictions. Development and agriculture negatively influenced stream condition for model average (partial dependence [PD] and accumulated local effect [ALE] plots) and local (individual condition expectation and Shapley value plots) levels. Friedman's H-statistic indicated large overall interactions for these three land covers, and bivariate global plots (PD and ALE) supported interactions among agriculture and development. Total stream length and catchment area predicted in FairGood conditions decreased then increased over the 19-years (length/area: 66.6/65.4% in 2001, 66.3/65.2% in 2011, and 66.6/65.4% in 2019). Examination of individual catchment predictions between 2001 and 2019 showed those predicted to have the largest decreases in condition had large increases in development; whereas catchments predicted to exhibit the largest increases in condition showed moderate increases in forest cover. Use of global and local interpretative methods together with watershed-wide and individual catchment predictions support conservation practitioners that need to identify widespread and localized patterns, especially acknowledging that management actions typically take place at individual-reach scales.


Subject(s)
Bays , Rivers , Agriculture , Ecosystem , Environmental Monitoring/methods , Machine Learning
6.
PLoS One ; 16(12): e0260654, 2021.
Article in English | MEDLINE | ID: mdl-34882701

ABSTRACT

Climate change is impacting the function and distribution of habitats used by marine, coastal, and diadromous species. These impacts often exacerbate the anthropogenic stressors that habitats face, particularly in the coastal environment. We conducted a climate vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S. to develop an ecosystem-scale understanding of the impact of climate change on these habitats. The trait-based assessment considers the overall vulnerability of a habitat to climate change to be a function of two main components, sensitivity and exposure, and relies on a process of expert elicitation. The climate vulnerability ranks ranged from low to very high, with living habitats identified as the most vulnerable. Over half of the habitats examined in this study are expected to be impacted negatively by climate change, while four habitats are expected to have positive effects. Coastal habitats were also identified as highly vulnerable, in part due to the influence of non-climate anthropogenic stressors. The results of this assessment provide regional managers and scientists with a tool to inform habitat conservation, restoration, and research priorities, fisheries and protected species management, and coastal and ocean planning.


Subject(s)
Climate Change , Conservation of Natural Resources/methods , Ecosystem , Estuaries , New England
7.
Sci Total Environ ; 789: 147985, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34323823

ABSTRACT

Stream ecosystems are complex networks of interacting terrestrial and aquatic drivers. To untangle these ecological networks, efforts evaluating the direct and indirect effects of landscape, climate, and instream predictors on biological condition through time are needed. We used structural equation modeling and leveraged a stream survey program to identify and compare important predictors driving condition of benthic macroinvertebrate and fish assemblages. We used data resampled 14 years apart at 252 locations across Maryland, USA. Sample locations covered a wide range of conditions that varied spatiotemporally. Overall, the relationship directions were consistent between sample periods, but their relative strength varied temporally. For benthic macroinvertebrates, we found that the total effect of natural landscape (e.g., elevation, longitude, latitude, geology) and land use (i.e., forest, development, agriculture) predictors was 1.4 and 1.5 times greater in the late 2010s compared to the 2000s. Moreover, the total effect of water quality (e.g., total nitrogen and conductivity) and habitat (e.g., embeddedness, riffle quality) was 1.2 and 4.8 times lower in the 2010s, respectively. For fish assemblage condition, the total effect of land use-land cover predictors was 2.3 times greater in the 2010s compared to the 2000s, while the total effect of local habitat was 1.4 times lower in the 2010s, respectively. As expected, we found biological assemblages in catchments with more agriculture and urban development were generally comprised of tolerant, generalist species, while assemblages in catchments with greater forest cover had more-specialized, less-tolerant species (e.g., Ephemeroptera, Plecoptera, and Trichoptera taxa, clingers, benthic and lithophilic spawning fishes). Changes in the relative importance of landscape and land-use predictors suggest other correlated, yet unmeasured, proximal factors became more important over time. By untangling these ecological networks, stakeholders can gain a better understanding of the spatiotemporal relationships driving biological condition to implement management practices aimed at improving stream condition.

8.
Environ Manage ; 67(6): 1171-1185, 2021 06.
Article in English | MEDLINE | ID: mdl-33710388

ABSTRACT

Regionally scaled assessments of hydrologic alteration for small streams and its effects on freshwater taxa are often inhibited by a low number of stream gages. To overcome this limitation, we paired modeled estimates of hydrologic alteration to a benthic macroinvertebrate index of biotic integrity data for 4522 stream reaches across the Chesapeake Bay watershed. Using separate random-forest models, we predicted flow status (inflated, diminished, or indeterminant) for 12 published hydrologic metrics (HMs) that characterize the main components of flow regimes. We used these models to predict each HM status for each stream reach in the watershed, and linked predictions to macroinvertebrate condition samples collected from streams with drainage areas less than 200 km2. Flow alteration was calculated as the number of HMs with inflated or diminished status and ranged from 0 (no HM inflated or diminished) to 12 (all 12 HMs inflated or diminished). When focused solely on the stream condition and flow-alteration relationship, degraded macroinvertebrate condition was, depending on the number of HMs used, 3.8-4.7 times more likely in a flow-altered site; this likelihood was over twofold higher in the urban-focused dataset (8.7-10.8), and was never significant in the agriculture-focused dataset. Logistic regression analysis using the entire dataset showed for every unit increase in flow-alteration intensity, the odds of a degraded condition increased 3.7%. Our results provide an indication of whether altered streamflow is a possible driver of degraded biological conditions, information that could help managers prioritize management actions and lead to more effective restoration efforts.


Subject(s)
Bays , Ecosystem , Agriculture , Animals , Environmental Monitoring , Hydrology , Invertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...