Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1297: 342325, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38438246

ABSTRACT

This review summarizes the stepwise strategy and key points for magnetic beads (MBs)-based aptamer selection which is suitable for isolating aptamers against small and large molecules via systematic evolution of ligands by exponential enrichment (SELEX). Particularities, if any, are discussed according to the target size. Examples targeting small molecules (<1000 Da) such as xenobiotics, toxins, pesticides, herbicides, illegal additives, hormones, and large targets such as proteins (biomarkers, pathogens) are discussed and presented in tabular formats. Of special interest are the latest advances in more efficient alternatives, which are based on novel instrumentation, materials or microelectronics, such as fluorescence MBs-SELEX or microfluidic chip system-assisted MBs-SELEX. Limitations and perspectives of MBs-SELEX are also reviewed. Taken together, this review aims to provide practical insights into MBs-SELEX technologies and their ability to screen multiple potential aptamers against targets from small to large molecules.


Subject(s)
Herbicides , Chromatography, Affinity , Ligands , Microfluidics , Oligonucleotides
2.
Mikrochim Acta ; 191(2): 97, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38227051

ABSTRACT

Food allergies have become a global issue and are estimated to affect approximately 220 million people worldwide. Allergy to peanuts can easily become life-threatening and induce anaphylactic reactions. Mislabeling and cross-contamination during food processing can occur in the frame of world population growth and pose a serious health issue. As the mandatory allergen list is not uniform worldwide, the development of routine analytical strategies with high specificity and sensitivity is a demanding task to aid in the rapid identification of allergenic foods. In this work, an electrochemical aptasensor for Ara h1 peanut allergen was developed by immobilizing the specific aptamer by the inserting method. First, a layer of p-aminothiophenol (p-ATP) was immobilized on the gold surface of screen-printed electrodes (GSPE) to improve the aptamer insertion and reduce the fouling effects at the electrode surface. The grafting of the p-ATP and Ara h1 aptamer on the GSPE surface was monitored by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The resulting disposable aptasensor allowed for indirect electrochemical detection of Ara h1 protein in the presence of 5 mM ferro/ferricyanide as a redox probe. The electrochemical response upon aptamer-target interaction was monitored in the concentration range 1-250 nM, and two limits of detection in the nanomolar range were estimated based on DPV (2.78 nM Ara h1) and EIS (0.82 nM Ara h1) measurements. The aptasensor was successfully applied to real sample analysis.


Subject(s)
Aniline Compounds , Biofouling , Food Hypersensitivity , Sulfhydryl Compounds , Humans , DNA , Oligonucleotides , Arachis , Gold , Allergens , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...