Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Causes Control ; 35(3): 417-427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37812336

ABSTRACT

PURPOSE: While community engagement has been a longstanding aspect of cancer-relevant research in social and behavioral sciences, it is far less common in basic/translational/clinical research. With the National Cancer Institute's incorporation of Community Outreach and Engagement into the Cancer Center Support Grant guidelines, successful models are desirable. We report on a pilot study supported by the University of Maryland Greenebaum Comprehensive Cancer Center (UMGCCC), that used a community-engaged, data-driven process to inform a pre-clinical study of the impact of antioxidants on the efficacy of platinum-based chemotherapeutics. METHODS: We conducted a survey of UMGCCC catchment area residents (n = 120) to identify commonly used antioxidants. We then evaluated the effect of individually combining commonly used antioxidants from the survey (vitamin C, green tea, and melatonin) with platinum agents in models of non-small cell lung cancer (A549), colon adenocarcinoma (SW620) and head and neck squamous cell carcinoma (FaDu). RESULTS: In vitro, the anti-neoplastic activity of each chemotherapy was not potentiated by any of the antioxidants. Instead, when combined at fixed ratios, most antioxidant-chemotherapy combinations were antagonistic. In vivo, addition of antioxidants did not improve chemotherapeutic efficacy and in a FaDu-tumor bearing model, cisplatin-mediated tumor growth inhibition was significantly impeded by the addition of epigallocatechin gallate, the main antioxidant in green tea. CONCLUSION: These initial findings do not support addition of antioxidant supplementation to improve platinum-based chemotherapeutic efficacy. This study's approach can serve as a model of how to bring together the two seemingly discordant areas of basic research and community engagement.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Lung Neoplasms , Humans , Antioxidants/pharmacology , Pilot Projects , Colonic Neoplasms/drug therapy , Tea
2.
Cancers (Basel) ; 13(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34439340

ABSTRACT

Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.

3.
Int J Radiat Biol ; 97(sup1): S32-S44, 2021.
Article in English | MEDLINE | ID: mdl-32909880

ABSTRACT

PURPOSE: The hemorrhagic syndrome is a major cause of morbidity and mortality associated with the acute radiation syndrome (ARS). We previously characterized the dose-response relationship for total body irradiation (TBI)-induced ARS in the New Zealand White (NZW) rabbit. Thrombocytopenia, hemorrhage, and anemia were strongly associated with morbidity/mortality during the first three weeks post-TBI. The objective of the current study was to further characterize the natural history of thrombocytopenia, hemostatic dysfunction and hemorrhage in the rabbit model at a TBI dose range to induce ARS. METHODS: Fifty male NZW rabbits were randomized to receive 7.0 or 7.5 Gy of 6 MV-derived TBI. Sham-irradiated controls (n = 6) were included as a comparator. Animals were treated with minimal supportive care including pain medication, antibiotics, antipyretics for temperature >104.8 °F, and fluids for signs of dehydration. Animals were culled at pre-determined timepoints post-TBI, or for signs of imminent mortality based on pre-defined euthanasia criteria. Hematology parameters, serum chemistry, viscoelasticity of whole blood, coagulation tests, and coagulation factor activities were measured. A gross exam of vital organs was performed at necropsy. RESULTS: Findings in this study include severe neutropenia during the first week post-TBI followed by thrombocytopenia and severe acute anemia with petechial hemorrhages of the skin and hemorrhage of the vital organs during the second to third weeks post-TBI. Abnormalities in whole blood viscoelastometry were observed concurrent with thrombocytopenia and hemorrhage. Antithrombin activity was significantly elevated in animals after exposure to 7.5 Gy, but not 7.0 Gy TBI. CONCLUSIONS: The hemorrhagic syndrome in the rabbit model of TBI recapitulates the pathogenesis described in humans following accidental or deliberate exposures. The rabbit may present an alternative to the rodent model as a small animal species for characterization of the full spectrum of multiorgan injury following TBI and early testing of promising medical countermeasures.


Subject(s)
Acute Radiation Syndrome , Thrombocytopenia , Acute Radiation Syndrome/pathology , Animals , Hemorrhage/etiology , Male , Medical Countermeasures , Rabbits , Thrombocytopenia/etiology , Whole-Body Irradiation/adverse effects
4.
Environ Mol Mutagen ; 61(8): 797-806, 2020 10.
Article in English | MEDLINE | ID: mdl-32729949

ABSTRACT

Procarbazine (PCZ) and N-propyl-N-nitrosourea (PNU) are rodent mutagens and carcinogens. Both induce GPI-anchored marker-deficient mutant-phenotype red blood cells (RBCs) in the flow cytometry-based rat RBC Pig-a assay. In the present study, we traced the origin of the RBC mutant phenotype by analyzing Pig-a mutations in the precursors of RBCs, bone marrow erythroid cells (BMEs). Rats were exposed to a total of 450 mg/kg PCZ hydrochloride or 300 mg/kg PNU, and bone marrow was collected 2, 7, and 10 weeks later. Using a flow cell sorter, we isolated CD59-deficient mutant-phenotype BMEs from PCZ- and PNU-treated rats and examined their endogenous X-linked Pig-a gene by next generation sequencing. Pig-a mutations consistent with the properties of PCZ and PNU were found in sorted mutant-phenotype BMEs. PCZ induced mainly A > T transversions with the mutated A on the nontranscribed strand of the Pig-a gene, while PNU induced mainly T > A transversions with the mutated T on the nontranscribed strand. The treatment-induced mutations were distributed across the protein coding sequence of the Pig-a gene. The causal relationship between BMEs and RBCs and the agent-specific mutational spectra in CD59-deicient BMEs indicate that the rat RBC Pig-a assay, scoring CD59-deficient mutant-phenotype RBCs in peripheral blood, detects Pig-a gene mutation.


Subject(s)
Antineoplastic Agents/toxicity , Bone Marrow Cells/drug effects , CD59 Antigens/genetics , Membrane Proteins/genetics , Mutation , Nitrosourea Compounds/toxicity , Procarbazine/toxicity , Animals , Bone Marrow Cells/immunology , Male , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...