Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 14(20): 4576-81, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27126273

ABSTRACT

The design and development of irreversible kinase inhibitors is an expanding frontier of kinase drug discovery. The current approach to develop these inhibitors utilizes ATP-competitive inhibitor scaffolds to target non-catalytic cysteines in the kinase ATP-binding site. However, this approach is limited as not all kinases have a cysteine in the ATP-binding site that can be targeted. In this work, we report a complementary approach to developing irreversible kinase inhibitors that utilizes the substrate-binding site. Using the catalytic subunit of cAMP-dependent protein kinase (PKACα) as a model system, we have designed and synthesized an irreversible inhibitor based on the substrate-competitive inhibitor scaffold PKI(14-22) that covalently modifies non-catalytic Cys199 in the PKACα substrate-binding site. The new compound inhibits PKACα (IC50 = 11.8 ± 1.1 nM), is ∼100-fold selective for PKACα in a kinase panel, and covalently labels the kinase as demonstrated by fluorescence, mass spectrometry, and kinetics experiments. This study demonstrates the feasibility of utilizing this new approach to develop irreversible inhibitors for any of the eighty-nine kinases that possess a similar non-catalytic cysteine in their substrate-binding sites.


Subject(s)
Catalytic Domain , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/chemistry , Drug Design , Fluorescent Dyes/chemistry , Ketones/chemical synthesis , Ketones/pharmacology , Amino Acid Sequence , Chemistry Techniques, Synthetic , Ketones/chemistry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...