Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Oncogenesis ; 13(1): 4, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191593

ABSTRACT

The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.

3.
Oncogene ; 42(22): 1857-1873, 2023 06.
Article in English | MEDLINE | ID: mdl-37095257

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostate/metabolism , DNA Damage/genetics , Transforming Growth Factor beta/genetics , Eye Proteins/metabolism , Transcription Factors/genetics
4.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712010

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

5.
Cancers (Basel) ; 13(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946495

ABSTRACT

HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.

6.
Cell Rep ; 32(11): 108151, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32937140

ABSTRACT

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1-but not nuclear-localized cyclin D1-recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.


Subject(s)
Cyclin D1/metabolism , Mitogens/metabolism , Phosphoserine/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , 3T3 Cells , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Membrane/metabolism , Cyclin D1/genetics , Cyclin-Dependent Kinases/metabolism , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , MCF-7 Cells , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Transcription, Genetic
7.
Oncogenesis ; 9(9): 83, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948740

ABSTRACT

The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1-S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1-S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17ß-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.

8.
Oncogene ; 38(22): 4232-4249, 2019 05.
Article in English | MEDLINE | ID: mdl-30718920

ABSTRACT

Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation.


Subject(s)
Cyclin D1/metabolism , DNA Methylation/physiology , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Cell Cycle/physiology , Cell Line , Cell Line, Tumor , Chromatin/metabolism , Chromosomes/physiology , HEK293 Cells , Humans , MCF-7 Cells , Protein Binding/physiology
9.
Theranostics ; 8(8): 2251-2263, 2018.
Article in English | MEDLINE | ID: mdl-29721077

ABSTRACT

Background: Genetic classification of breast cancer based on the coding mRNA suggests the evolution of distinct subtypes. Whether the non-coding genome is altered concordantly with the coding genome and the mechanism by which the cell cycle directly controls the non-coding genome is poorly understood. Methods: Herein, the miRNA signature maintained by endogenous cyclin D1 in human breast cancer cells was defined. In order to determine the clinical significance of the cyclin D1-mediated miRNA signature, we defined a miRNA expression superset from 459 breast cancer samples. We compared the coding and non-coding genome of breast cancer subtypes. Results: Hierarchical clustering of human breast cancers defined four distinct miRNA clusters (G1-G4) associated with distinguishable relapse-free survival by Kaplan-Meier analysis. The cyclin D1-regulated miRNA signature included several oncomirs, was conserved in multiple breast cancer cell lines, was associated with the G2 tumor miRNA cluster, ERα+ status, better outcome and activation of the Wnt pathway. The coding and non-coding genome were discordant within breast cancer subtypes. Seed elements for cyclin D1-regulated miRNA were identified in 63 genes of the Wnt signaling pathway including DKK. Cyclin D1 restrained DKK1 via the 3'UTR. In vivo studies using inducible transgenics confirmed cyclin D1 induces Wnt-dependent gene expression. Conclusion: The non-coding genome defines breast cancer subtypes that are discordant with their coding genome subtype suggesting distinct evolutionary drivers within the tumors. Cyclin D1 orchestrates expression of a miRNA signature that induces Wnt/ß-catenin signaling, therefore cyclin D1 serves both upstream and downstream of Wnt/ß-catenin signaling.


Subject(s)
Breast Neoplasms/genetics , Cyclin D1/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Animals , Cyclin D1/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mice , MicroRNAs/metabolism , Prognosis , Treatment Outcome , Wnt Signaling Pathway/genetics
10.
Oncotarget ; 8(47): 81754-81775, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137220

ABSTRACT

The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.

11.
Oncotarget ; 8(47): 81803-81812, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137223

ABSTRACT

Cell cycle control proteins govern events that leads to the production of two identical daughter cells. Distinct sequential temporal phases, Gap 1 (G1), Gap 0 (G0), Synthesis (S), Gap 2 (G2) and Mitosis (M) are negotiated through a series of check points during which the favorability of the local cellular environment is assessed, prior to replicating DNA [1]. Cyclin D1 has been characterized as a key regulatory subunit of the holoenzyme that promotes the G1/S-phase transition through phosphorylating the pRB protein. Cyclin D1 overexpression is considered a driving force in several types of cancers and cdk inhibitors are being used effectively in the clinic for treatment of ERα+ breast cancer [1, 2]. Genomic DNA is assaulted by damaging ionizing radiation, chemical carcinogens, and reactive oxygen species (ROS) which are generated by cellular metabolism. Furthermore, specific hormones including estrogens [3, 4] and androgens [5] govern pathways that damage DNA. Defects in the DNA Damage Response (DDR) pathway can lead to genomic instability and cancer. Evidence is emerging that cyclin D1 bind proteins involved in DNA repair including BRCA1 [6], RAD51 [7], BRCA2 [8] and is involved in the DNA damage and DNA repair processes [7, 8]. Because the repair of damaged DNA appears to be an important and unexpected role for cyclin D1, and inhibitors of cyclin D1-dependent kinase activity are being used in the clinic, the latest findings on the role of cyclin D1 in mediating the DDR including the DDR induced by the hormones estrogen [9] and androgen [10, 11] is reviewed.

12.
Cancer Res ; 77(13): 3391-3405, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28522753

ABSTRACT

Autophagy activated after DNA damage or other stresses mitigates cellular damage by removing damaged proteins, lipids, and organelles. Activation of the master metabolic kinase AMPK enhances autophagy. Here we report that cyclin D1 restrains autophagy by modulating the activation of AMPK. In cell models of human breast cancer or in a cyclin D1-deficient model, we observed a cyclin D1-mediated reduction in AMPK activation. Mechanistic investigations showed that cyclin D1 inhibited mitochondrial function, promoted glycolysis, and reduced activation of AMPK (pT172), possibly through a mechanism that involves cyclin D1-Cdk4/Cdk6 phosphorylation of LKB1. Our findings suggest how AMPK activation by cyclin D1 may couple cell proliferation to energy homeostasis. Cancer Res; 77(13); 3391-405. ©2017 AACR.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/genetics , Cyclin D1/metabolism , Protein Serine-Threonine Kinases/metabolism , 3T3 Cells , AMP-Activated Protein Kinase Kinases , Animals , Autophagy/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/genetics , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Signal Transduction , Transfection
13.
Oncotarget ; 8(10): 17373-17382, 2017 Mar 07.
Article in English | MEDLINE | ID: mdl-28077789

ABSTRACT

Cyclin dependent kinases are proline-directed serine/threonine protein kinases that are traditionally activated upon association with a regulatory subunit. For most CDKs, activation by a cyclin occurs through association and phosphorylation of the CDK's T-loop. CDK5 is unusual because it is not typically activated upon binding with a cyclin and does not require T-loop phosphorylation for activation, even though it has high amino acid sequence homology with other CDKs. While it was previously thought that CDK5 only interacted with p35 or p39 and their cleaved counterparts, Recent evidence suggests that CDK5 can interact with certain cylins, amongst other proteins, which modulate CDK5 activity levels. This review discusses recent findings of molecular interactions that regulate CDK5 activity and CDK5 associated pathways that are implicated in various diseases. Also covered herein is the growing body of evidence for CDK5 in contributing to the onset and progression of tumorigenesis.


Subject(s)
Cyclin-Dependent Kinase 5/metabolism , Cyclins/metabolism , Animals , Biocatalysis/drug effects , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Enzyme Activation/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects
14.
Cancer Res ; 76(22): 6723-6734, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27634768

ABSTRACT

Proteomic analysis of castration-resistant prostate cancer demonstrated the enrichment of Src tyrosine kinase activity in approximately 90% of patients. Src is known to induce cyclin D1, and a cyclin D1-regulated gene expression module predicts poor outcome in human prostate cancer. The tumor-associated calcium signal transducer 2 (TACSTD2/Trop2/M1S1) is enriched in the prostate, promoting prostate stem cell self-renewal upon proteolytic activation via a γ-secretase cleavage complex (PS1, PS2) and TACE (ADAM17), which releases the Trop2 intracellular domain (Trop2 ICD). Herein, v-Src transformation of primary murine prostate epithelial cells increased the proportion of prostate cancer stem cells as characterized by gene expression, epitope characteristics, and prostatosphere formation. Cyclin D1 was induced by v-Src, and Src kinase induction of Trop2 ICD nuclear accumulation required cyclin D1. Cyclin D1 induced abundance of the Trop2 proteolytic cleavage activation components (PS2, TACE) and restrained expression of the inhibitory component of the Trop2 proteolytic complex (Numb). Patients with prostate cancer with increased nuclear Trop2 ICD and cyclin D1, and reduced Numb, had reduced recurrence-free survival probability (HR = 4.35). Cyclin D1, therefore, serves as a transducer of v-Src-mediated induction of Trop2 ICD by enhancing abundance of the Trop2 proteolytic activation complex. Cancer Res; 76(22); 6723-34. ©2016 AACR.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cyclin D1/metabolism , src-Family Kinases/metabolism , Animals , Humans , Mice , Signal Transduction , Transfection
15.
J Vis Exp ; (111)2016 05 04.
Article in English | MEDLINE | ID: mdl-27168174

ABSTRACT

Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.


Subject(s)
Cell Movement , Microscopy, Video , Animals , Fluorescent Dyes , Humans , Mitophagy
17.
Oncotarget ; 7(5): 5383-400, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26689991

ABSTRACT

Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistant hormone-resistant PCa.


Subject(s)
Cyclin D1/antagonists & inhibitors , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/genetics , Prostatic Neoplasms, Castration-Resistant/prevention & control , RNA, Small Interfering/genetics , Radiation Tolerance/genetics , Radiation-Sensitizing Agents , Animals , Apoptosis , Blotting, Western , Cell Adhesion , Cell Movement , Cell Proliferation , Cyclin D1/genetics , Cyclin D1/metabolism , DNA Repair/radiation effects , Fluorescent Antibody Technique , Histones/metabolism , Humans , Immunoenzyme Techniques , Male , Mice , Mice, Nude , Phosphorylation/radiation effects , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Signal Transduction/radiation effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
18.
Cancer Res ; 76(2): 329-38, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26582866

ABSTRACT

Therapy resistance and poor outcome in prostate cancer is associated with increased expression of cyclin D1. Androgens promote DNA double-strand break repair to reduce DNA damage, and cyclin D1 was also shown to enhance DNA damage repair (DDR). In this study, we investigated the significance of cyclin D1 in androgen-induced DDR using established prostate cancer cells and prostate tissues from cyclin D1 knockout mice. We demonstrate that endogenous cyclin D1 further diminished the dihydrotestosterone (DHT)-dependent reduction of γH2AX foci in vitro. We also show that cyclin D1 was required for the androgen-dependent DNA damage response both in vitro and in vivo. Furthermore, cyclin D1 was required for androgen-enhanced DDR and radioresistance of prostate cancer cells. Moreover, microarray analysis of primary prostate epithelial cells from cyclin D1-deficient and wild-type mice demonstrated that most of the DHT-dependent gene expression changes are also cyclin D1 dependent. Collectively, our findings suggest that the hormone-mediated recruitment of cyclin D1 to sites of DDR may facilitate the resistance of prostate cancer cells to DNA damage therapies and highlight the need to explore other therapeutic approaches in prostate cancer to prevent or overcome drug resistance.


Subject(s)
Cyclin D1/genetics , DNA Damage , DNA Repair , Dihydrotestosterone/pharmacology , Neoplasms, Hormone-Dependent/genetics , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Cyclin D1/biosynthesis , Histones/genetics , Histones/metabolism , Humans , Male , Mice , Mice, Knockout , Neoplasms, Hormone-Dependent/metabolism , Prostatic Neoplasms/metabolism , Transfection
20.
Oncotarget ; 6(11): 8525-38, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25940700

ABSTRACT

Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis.


Subject(s)
Adenocarcinoma/genetics , Cyclin D1/physiology , Mammary Neoplasms, Experimental/genetics , Amino Acid Substitution , Aneuploidy , Animals , Catalytic Domain/genetics , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Centrosome/ultrastructure , Chromosomal Instability/genetics , Cyclin D1/deficiency , Cyclin D1/genetics , Female , Fibroblasts , Genes, bcl-1 , Humans , Mammary Tumor Virus, Mouse/physiology , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Piperazines/pharmacology , Pyridines/pharmacology , Recombinant Fusion Proteins/metabolism , Spindle Apparatus/ultrastructure , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...