Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 20: 101040, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144842

ABSTRACT

Given rising traders and consumers concerns, the global food industry is increasingly demanding authentic and traceable products. Consequently, there is a heightened focus on verifying geographical authenticity as food quality assurance. In this work, we assessed pattern recognition approaches based on elemental predictors to discern the provenance of mandarin juices from three distinct citrus-producing zones located in the Northeast region of Argentina. A total of 202 samples originating from two cultivars were prepared through microwave-assisted acid digestion and analyzed by microwave plasma atomic emission spectroscopy (MP-AES). Later, we applied linear discriminant analysis (LDA), k-nearest neighbor (k-NN), support vector machine (SVM), and random forest (RF) to the element data obtained. SVM accomplished the best classification performance with a 95.1% success rate, for which it was selected for citrus samples authentication. The proposed method highlights the capability of mineral profiles in accurately identifying the genuine origin of mandarin juices. By implementing this model in the food supply chain, it can prevent mislabeling fraud, thereby contributing to consumer protection.

2.
Food Chem X ; 18: 100744, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397223

ABSTRACT

This paper introduces a method for determining the authenticity of commercial cereal bars based on trace element fingerprints. In this regard, 120 cereal bars were prepared using microwave-assisted acid digestion and the concentrations of Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Rb, Se, Sn, Sr, V, and Zn were later measured by ICP-MS. Results confirmed the suitability of the analyzed samples for human consumption. Multielemental data underwent autoscaling preprocessing for then applying PCA, CART, and LDA to input data set. LDA model accomplished the highest classification modeling performance with a success rate of 92%, making it the suitable model for reliable cereal bar prediction. The proposed method demonstrates the potential of trace element fingerprints in distinguishing cereal bar samples according to their type (conventional and gluten-free) and principal ingredient (fruit, yogurt, chocolate), thereby contributing to global efforts for food authentication.

3.
Food Chem ; 368: 130840, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34450499

ABSTRACT

A novel analytical method using voltammetric second-order modeling based on multivariate curve resolution-alternating least-square (MCR-ALS) is presented for the first time for the quantitation of carvacrol (CAR) in oregano essential oils (OEO). The second-order cyclic voltammetry data were generated on the basis that CAR shows a diffusional system. Thus, the scan rate (v) was used as a second instrumental mode and cyclic voltammograms at different v were acquired for a single sample, generating the second-order data. CAR determination was performed in presence of thymol, included as a potential interferent. Results demonstrated that MCR-ALS successfully exploited the second-order advantage and the recoveries were not statistically different than 100%. The limits of detection and quantitation were estimated using the MCR-ALS which were 6.27 × 10-5°mol°L-1°and 1.90 × 10-4°mol L-1, respectively. Finally, the developed methodology was implemented to quantify of CAR in OEO samples.


Subject(s)
Oils, Volatile , Origanum , Cymenes , Thymol
SELECTION OF CITATIONS
SEARCH DETAIL
...