Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(49): 12471-12476, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30397141

ABSTRACT

Species richness is greatest in the tropics, and much of this diversity is concentrated in mountains. Janzen proposed that reduced seasonal temperature variation selects for narrower thermal tolerances and limited dispersal along tropical elevation gradients [Janzen DH (1967) Am Nat 101:233-249]. These locally adapted traits should, in turn, promote reproductive isolation and higher speciation rates in tropical mountains compared with temperate ones. Here, we show that tropical and temperate montane stream insects have diverged in thermal tolerance and dispersal capacity, two key traits that are drivers of isolation in montane populations. Tropical species in each of three insect clades have markedly narrower thermal tolerances and lower dispersal than temperate species, resulting in significantly greater population divergence, higher cryptic diversity, higher tropical speciation rates, and greater accumulation of species over time. Our study also indicates that tropical montane species, with narrower thermal tolerance and reduced dispersal ability, will be especially vulnerable to rapid climate change.


Subject(s)
Animal Distribution , Biodiversity , Genetic Speciation , Insecta/genetics , Insecta/physiology , Altitude , Animals , Temperature , Tropical Climate
2.
Conserv Biol ; 28(3): 773-82, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24527888

ABSTRACT

Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern.


Subject(s)
Biodiversity , Butterflies/physiology , Climate Change , Environment , Urbanization , Animals , California , Conservation of Natural Resources , Models, Theoretical , Seasons , Species Specificity , Temperature
3.
Ecology ; 92(12): 2222-35, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22352162

ABSTRACT

Understanding the ecology of extinction is one of the primary challenges facing ecologists in the 21st century. Much of our current understanding of extinction, particularly for invertebrates, comes from studies with large geographic coverage but less temporal resolution, such as comparisons between historical collection records and contemporary surveys for geographic regions or political entities. We present a complementary approach involving a data set that is geographically restricted but temporally intensive: we focus on three sites in the Central Valley of California, and utilize 35 years of biweekly (every two weeks) surveys at our most long-sampled site. Previous analyses of these data revealed declines in richness over recent decades. Here, we take a more detailed approach to investigate the mode of decline for this fauna. We ask if all species are in decline, or only a subset. We also investigate traits commonly found to be predictors of extinction risk in other studies, such as body size, diet breadth, habitat association, and geographic range. We find that population declines are ubiquitous: the majority of species at our three focal sites (but not at a nearby site at higher elevation) are characterized by reductions in the fraction of days that they are observed per year. These declines are not readily predicted by ecological traits, with the possible exception of ruderal/non-ruderal status. Ruderal species, in slightly less precipitous decline than non-ruderal taxa, are more dispersive and more likely to be associated with disturbed habitats and exotic hosts. We conclude that population declines and extirpation, particularly in regions severely and recently impacted by anthropogenic alteration, might not be as predictable as has been suggested by other studies on the ecology of extinction.


Subject(s)
Butterflies , Extinction, Biological , Animals , Biodiversity , California , Geography , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...