Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Sports Physiol Perform ; 17(6): 979-990, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35338107

ABSTRACT

PURPOSE: This study tested the hypothesis of whether ischemic exercise preconditioning (IPC-Ex) elicits a better intense endurance exercise performance than traditional ischemic preconditioning at rest (IPC-rest) and a SHAM procedure. METHODS: Twelve men (average V˙O2max ∼61 mL·kg-1·min-1) performed 3 trials on separate days, each consisting of either IPC-Ex (3 × 2-min cycling at ∼40 W with a bilateral-leg cuff pressure of ∼180 mm Hg), IPC-rest (4 × 5-min supine rest at 220 mm Hg), or SHAM (4 × 5-min supine rest at <10 mm Hg) followed by a standardized warm-up and a 4-minute maximal cycling performance test. Power output, blood lactate, potassium, pH, rating of perceived exertion, oxygen uptake, and gross efficiency were assessed. RESULTS: Mean power during the performance test was higher in IPC-Ex versus IPC-rest (+4%; P = .002; 95% CI, +5 to 18 W). No difference was found between IPC-rest and SHAM (-2%; P = .10; 95% CI, -12 to 1 W) or between IPC-Ex and SHAM (+2%; P = .09; 95% CI, -1 to 13 W). The rating of perceived exertion increased following the IPC-procedure in IPC-Ex versus IPC-rest and SHAM (P < .001). During warm-up, IPC-Ex elevated blood pH versus IPC-rest and SHAM (P ≤ .027), with no trial differences for blood potassium (P > .09) or cycling efficiency (P ≥ .24). Eight subjects anticipated IPC-Ex to be best for their performance. Four subjects favored SHAM. CONCLUSIONS: Performance in a 4-minute maximal test was better following IPC-Ex than IPC-rest and tended to be better than SHAM. The IPC procedures did not affect blood potassium, while pH was transiently elevated only by IPC-Ex. The performance-enhancing effect of IPC-Ex versus IPC-rest may be attributed to a placebo effect, improved pH regulation, and/or a change in the perception of effort.


Subject(s)
Ischemic Preconditioning , Oxygen Consumption , Bicycling/physiology , Exercise Test , Humans , Ischemic Preconditioning/methods , Male , Oxygen Consumption/physiology , Potassium
2.
Cartilage ; 13(2_suppl): 254S-266S, 2021 12.
Article in English | MEDLINE | ID: mdl-34308681

ABSTRACT

OBJECTIVE: This study evaluated the effects of mesenchymal stem cell-extracellular vesicles (MSC-EVs) on chondrocyte proliferation in vitro and on cartilage repair in vivo following bone marrow stimulation (BMS) of focal chondral defects of the knee. METHODS: Six adult Göttingen minipigs received 2 chondral defects in each knee. The pigs were randomized to treatment with either BMS combined with MSC-EVs or BMS combined with phosphate-buffered saline (PBS). Intraarticular injections MSC-EVs or PBS were performed immediately after closure of the surgical incisions, and at 2 and 4 weeks postoperatively. Repair was evaluated after 6 months with gross examination, histology, histomorphometry, immunohistochemistry, and micro-computed tomography (µCT) analysis of the trabecular bone beneath the defect. RESULTS: Defects treated with MSC-EVs had more bone in the cartilage defect area than the PBS-treated defects (7.9% vs. 1.5%, P = 0.02). Less than 1% of the repair tissue in both groups was hyaline cartilage. International Cartilage and Joint Preservation Society II histological scoring showed that defects treated with MSC-EVs scored lower on "matrix staining" (20.8 vs. 50.0, P = 0.03), "cell morphology" (35.4 vs. 53.8, P = 0.04), and "overall assessment" (30.8 vs. 52.9, P = 0.03). Consistently, defects treated with MSC-EVs had lower collagen II and higher collagen I areal deposition. Defects treated with MSC-EVs had subchondral bone with significantly higher tissue mineral densities than PBS-treated defects (860 mg HA/cm3 vs. 838 mg HA/cm3, P = 0.02). CONCLUSION: Intraarticular injections of MSC-EVs in conjunction with BMS led to osseous ingrowth that impaired optimal cartilage repair, while enhancing subchondral bone healing.


Subject(s)
Cartilage, Articular , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Bone Marrow , Cartilage, Articular/surgery , Swine , Swine, Miniature , X-Ray Microtomography
3.
Cartilage ; 13(1_suppl): 937S-947S, 2021 12.
Article in English | MEDLINE | ID: mdl-31538811

ABSTRACT

PURPOSE: To evaluate the clinical and biological outcome of combined bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) on a collagen scaffold for treating cartilage lesions in the knee. METHODS AND MATERIALS: Ten patients (mean age 29.4 years, range 18-36) suffering from large full-thickness cartilage in the knee were treated with BMAC and PRP from January 2015 to December 2016. In a 1-step procedure autologous BMAC and PRP was seeded onto a collagen scaffold and sutured into the debrided defect. Patients were evaluated by clinical outcome scores (IKDC [International Knee Documentation Committee Subjective Knee Form], KOOS [Knee Injury and Osteoarthritis Outcome Score], and pain score using the Numeric Rating Scale [NRS]) preoperatively, after 3 months, and after 1 and 2 years. Second-look arthroscopies were performed (n = 7) with biopsies of the repair tissue for histology. All patients had magnetic resonance imaging (MRI) preoperatively, after 1 year, and after 2 to 3.5 years with MOCART (magnetic resonance observation of cartilage repair tissue) scores evaluating cartilage repair. RESULTS: After 1 year significant improvements were found in IKDC, KOOS symptoms, KOOS ADL (Activities of Daily Living), KOOS QOL (Quality of Life), and pain at activity. At the latest follow-up significant improvements were seen in IKDC, KOOS symptoms, KOOS QOL, pain at rest, and pain at activity. MRI MOCART score for cartilage repair improved significantly from baseline to 1-year follow-up. Histomorphometry of repair tissue demonstrated a mixture of fibrous tissue (58%) and fibrocartilage (40%). CONCLUSION: Treatment of cartilage injuries using combined BMAC and PRP improved subjective clinical outcome scores and pain scores at 1 and 2 years postoperatively. MRI and histology indicated repair tissue inferior to the native hyaline cartilage.


Subject(s)
Bone Marrow Transplantation , Cartilage Diseases/surgery , Cartilage, Articular/surgery , Knee Joint/surgery , Platelet-Rich Plasma , Activities of Daily Living , Adolescent , Adult , Female , Humans , Male , Quality of Life , Tissue Scaffolds , Treatment Outcome , Young Adult
4.
Dis Model Mech ; 12(11)2019 11 22.
Article in English | MEDLINE | ID: mdl-31704726

ABSTRACT

Parkinson's disease (PD) is a basal ganglia movement disorder characterized by progressive degeneration of the nigrostriatal dopaminergic system. Immunohistochemical methods have been widely used for characterization of dopaminergic neuronal injury in animal models of PD, including the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. However, conventional immunohistochemical techniques applied to tissue sections have inherent limitations with respect to loss of 3D resolution, yielding insufficient information on the architecture of the dopaminergic system. To provide a more comprehensive and non-biased map of MPTP-induced changes in central dopaminergic pathways, we used iDISCO immunolabeling, light-sheet fluorescence microscopy (LSFM) and deep-learning computational methods for whole-brain three-dimensional visualization and automated quantitation of tyrosine hydroxylase (TH)-positive neurons in the adult mouse brain. Mice terminated 7 days after acute MPTP administration demonstrated widespread alterations in TH expression. Compared to vehicle controls, MPTP-dosed mice showed a significant loss of TH-positive neurons in the substantia nigra pars compacta and ventral tegmental area. Also, MPTP dosing reduced overall TH signal intensity in basal ganglia nuclei, i.e. the substantia nigra, caudate-putamen, globus pallidus and subthalamic nucleus. In contrast, increased TH signal intensity was predominantly observed in limbic regions, including several subdivisions of the amygdala and hypothalamus. In conclusion, mouse whole-brain 3D imaging is ideal for unbiased automated counting and densitometric analysis of TH-positive cells. The LSFM-deep learning pipeline tracked brain-wide changes in catecholaminergic pathways in the MPTP mouse model of PD, and may be applied for preclinical characterization of compounds targeting dopaminergic neurotransmission.


Subject(s)
Brain/diagnostic imaging , Disease Models, Animal , Imaging, Three-Dimensional/methods , Neurons/enzymology , Parkinson Disease/diagnostic imaging , Tyrosine 3-Monooxygenase/analysis , Animals , Deep Learning , MPTP Poisoning/diagnostic imaging , Mice , Microscopy, Fluorescence , Motor Skills , Parkinson Disease/enzymology
5.
J Biol Chem ; 294(31): 11817-11828, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31197037

ABSTRACT

The serine protease high-temperature requirement protein A1 (HtrA1) is associated with protein-misfolding disorders such as Alzheimer's disease and transforming growth factor ß-induced protein (TGFBIp)-linked corneal dystrophy. In this study, using several biochemical and biophysical approaches, including recombinant protein expression, LC-MS/MS and 2DE analyses, and thioflavin T (ThT) fluorescence assays for amyloid fibril detection, and FTIR assays, we investigated the role of HtrA1 both in normal TGFBIp turnover and in corneal amyloid formation. We show that HtrA1 can cleave WT TGFBIp but prefers amyloidogenic variants. Corneal TGFBIp is extensively processed in healthy people, resulting in C-terminal degradation products spanning the FAS1-4 domain of TGFBIp. We show here that HtrA1 cleaves the WT FAS1-4 domain only inefficiently, whereas the amyloidogenic FAS1-4 mutations transform this domain into a considerably better HTRA1 substrate. Moreover, HtrA1 cleavage of the mutant FAS1-4 domains generated peptides capable of forming in vitro amyloid aggregates. Significantly, these peptides have been previously identified in amyloid deposits in vivo, supporting the idea that HtrA1 is a causative agent for TGFBIp-associated amyloidosis in corneal dystrophy. In summary, our results indicate that TGFBIp is an HtrA1 substrate and that some mutations in the gene encoding TGFBIp cause aberrant HtrA1-mediated processing that results in amyloidogenesis in corneal dystrophies.


Subject(s)
Amyloid/metabolism , Extracellular Matrix Proteins/metabolism , High-Temperature Requirement A Serine Peptidase 1/metabolism , Transforming Growth Factor beta/metabolism , Aged, 80 and over , Chromatography, High Pressure Liquid , Cornea/metabolism , Corneal Diseases/metabolism , Corneal Diseases/pathology , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Mutagenesis, Site-Directed , Peptides/analysis , Peptides/metabolism , Protein Domains , Protein Folding , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Tandem Mass Spectrometry , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics
6.
J Comp Neurol ; 527(12): 2069-2085, 2019 08 15.
Article in English | MEDLINE | ID: mdl-30809795

ABSTRACT

Central activation of fibroblast growth factor (FGF) receptors regulates peripheral glucose homeostasis and reduces food intake in preclinical models of obesity and diabetes. The current work was undertaken to advance our understanding of the receptor expression, as sites of ligand action by FGF19, FGF21, and FGF1 in the mammalian brain remains unresolved. Recent advances in automated RNAscope in situ hybridization and droplet digital PCR (ddPCR) technology allowed us to interrogate central FGFR/beta klotho (Klb) system at the cellular level in the mouse, with relevant comparisons to nonhuman primate and human brain. FGFR1-3 gene expression was broadly distributed throughout the CNS in Mus musculus, with FGFR1 exhibiting the greatest heterogeneity. FGFR4 expression localized only in the medial habenula and subcommissural organ of mice. Likewise, Klb mRNA was restricted to the suprachiasmatic nucleus (SCh) and select midbrain and hindbrain nuclei. ddPCR in the rodent hypothalamus confirmed that, although expression levels are indeed low for Klb, there is nonetheless a bonafide subpopulation of Klb+ cells in the hypothalamus. In NHP and human midbrain and hindbrain, Klb + cells are quite rare, as is expression of FGFR4. Collectively, these data provide the most robust central map of the FGFR/Klb system to date and highlight central regions that may be of critical importance to assess central ligand effects with pharmacological dosing, such as the putative interactions between the endocrine FGFs and FGFR1/Klb, or FGF19 with FGFR4.


Subject(s)
Brain Mapping/methods , Brain/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , In Situ Hybridization/methods , Animals , Fibroblast Growth Factors/analysis , Glucuronidase/analysis , Humans , Klotho Proteins , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL
7.
Protein Sci ; 28(3): 633-642, 2019 03.
Article in English | MEDLINE | ID: mdl-30592554

ABSTRACT

Functional amyloid (FA) is widespread in bacteria and serves multiple purposes such as strengthening of biofilm and contact with eukaryotic hosts. Unlike pathological amyloid, FA has been subjected to evolutionary optimization which is likely to be reflected in the aggregation mechanism. FA from different bacteria, including Escherichia coli (CsgA) and Pseudomonas (FapC), contains a number of imperfect repeats which may be key to efficient aggregation. Here we report on the aggregative behavior of FapC constructs which represent all single, double, and triple deletions of the protein's three imperfect repeats. Analysis of the fibrillation kinetics by the program Amylofit reveals that the removal of these repeats increases the tendency of the growing fibrils to fragment and also generally increases aggregation half-times. Remarkably, even the mutant lacking all three repeats was able to fibrillate, although fibrillation was much more irregular and led to significantly altered and destabilized fibrils. We conclude that imperfect repeats can promote fibrillation efficiency thanks to their modular design, though the context of the imperfect repeats also plays a significant role.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Pseudomonas/chemistry , Amino Acid Sequence , Amyloid/ultrastructure , Humans , Kinetics , Models, Molecular , Protein Aggregates , Pseudomonas Infections/microbiology
8.
Trauma Case Rep ; 17: 39-42, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30310846

ABSTRACT

The Bosworth fracture dislocation of the ankle is rare and present difficulties in treatment if not immediately recognized. Here we present two cases with pre- and postoperative x-rays and perioperative image of the dislocation. The fracture dislocations were further complicated by talocrural dislocations and were treated with open reduction and internal fixation.

9.
J Orthop Translat ; 12: 93, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29664480

ABSTRACT

[This corrects the article DOI: 10.1016/j.jot.2017.02.001.].

10.
Int J Oral Sci ; 9(1): 43-52, 2017 03.
Article in English | MEDLINE | ID: mdl-28282029

ABSTRACT

The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) investigate the effects of PCM molecules on chondrocytes against inflammation in osteoarthritis. Four zones (fibrous, proliferating, mature and hypertrophic) of condylar cartilage and three bands (anterior, intermediate and posterior) of disc were analysed by immunohistochemistry for the presence of PCM molecules in rat TMJs. Isolated chondrocytes were pre-treated with PCM molecules before being subjected to interleukin (IL)-1ß treatment to stimulate inflammation. The responses of the chondrocytes were analysed using gene expression, nitric oxide release and matrix metalloproteinase (MMP)-13 production measures. Histomorphometric analyses revealed that the highest areal deposition of collagen VI (67.4%), collagen IV (45.7%) and laminin (52.4%) was in the proliferating zone of TMJ condylar cartilage. No significant difference in the distribution of PCM molecules was noted among the three bands of the TMJ disc. All three PCM molecules were expressed intracellularly by chondrocytes cultured in the monolayer. Among the PCM molecules, pre-treatment with collagen VI enhanced cellular proliferation, ameliorated IL-1ß-induced MMP-3, MMP-9, MMP-13 and inducible nitric oxide synthase gene expression, and attenuated the downregulation of cartilage matrix genes, including collagen I, aggrecan and cartilage oligomeric matrix protein (COMP). Concurrently, collagen VI pretreatment inhibited nitric oxide and MMP-13 production. Our study demonstrates for the first time the distribution and role of PCM molecules, particularly collagen VI, in the protection of chondrocytes against inflammation.


Subject(s)
Chondrocytes/metabolism , Collagen/metabolism , Laminin/metabolism , Osteoarthritis/metabolism , Temporomandibular Joint/metabolism , Animals , Chondrocytes/cytology , Female , Immunohistochemistry , Inflammation/metabolism , Interleukin-1beta , Matrix Metalloproteinase 13/metabolism , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Temporomandibular Joint/cytology
11.
J Orthop Translat ; 9: 1-7, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29662794

ABSTRACT

There are high expectations for the clinical application of regenerative medicine technologies to treat musculoskeletal disorders. However, there are still big hurdles in bringing cell-based products to the market, mainly due to strict regulatory frameworks to approve these. Recently, the Japanese Pharmaceuticals and Medical Devices Agency adopted new regulations under legislature. The translational potential of this article is to inform on the regulations to bring experimental phase regenerative concepts to market approval in the United States and Europe, and highlight the opportunities granted by Japanese regulatory framework. Furthermore, we discuss the perspectives on the quickly evolving regulatory environment.

12.
J Biomed Mater Res A ; 104(12): 3073-3081, 2016 12.
Article in English | MEDLINE | ID: mdl-27490738

ABSTRACT

Cells constantly sense and receive chemical and physical signals from neighboring cells, interstitial fluid, and extracellular matrix, which they integrate and translate into intracellular responses. Thus, the nature of the surface on which cells are cultured in vitro plays an important role for cell adhesion, proliferation, and differentiation. Autologs chondrocyte implantation is considered the treatment of choice for larger cartilage defects in the knee. To obtain a sufficient number of chondrocytes for implantation multiple passaging is often needed, which raises concerns about the changes in the chondrogenic phenotype. In the present study, we analyzed the effect at cellular and molecular level of precipitant induced porosity augmentation (PIPA) of polystyrene surfaces on proliferation and differentiation of human chondrocytes. Human chondrocytes were isolated from healthy patients undergoing anterior cruciate ligament reconstruction and cultured on PIPA modified polystyrene surfaces. Microscopical analysis revealed topographically arranged porosity with micron pores and nanometer pits. Chondrocytes cultured on PIPA surfaces revealed no difference in cell viability and proliferation, but gene- and protein expressions of collagen type II were pronounced in the first passage of chondrocytes when compared to chondrocytes cultured on control surfaces. Additionally, an analysis of 40 kinases revealed that chondrocytes expanded on PIPA caused upregulated PI3K/mTOR pathway activation and inhibition of mTORC1 resulted in reduced sGAG synthesis. These findings indicate that PIPA modified polystyrene preserved the chondrogenicity of expanded human chondrocytes at gene and protein levels, which clinically may be attractive for the next generation of cell-culture surfaces for ex vivo cell growth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3073-3081, 2016.


Subject(s)
Biocompatible Materials/chemistry , Chemical Precipitation , Chondrocytes/cytology , Chondrogenesis , Dioxanes/chemistry , Polystyrenes/chemistry , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chondrocytes/metabolism , Gene Expression Regulation , Humans , Porosity , Protein Kinases/metabolism , Surface Properties
13.
Acta Orthop ; 87(sup363): 1-5, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28271925

ABSTRACT

The combination of modern interventional and preventive medicine has led to an epidemic of ageing. While this phenomenon is a positive consequence of an improved lifestyle and achievements in a society, the longer life expectancy is often accompanied by decline in quality of life due to musculoskeletal pain and disability. The Aarhus Regenerative Orthopaedics Symposium (AROS) 2015 was motivated by the need to address regenerative challenges in an ageing population by engaging clinicians, basic scientists, and engineers. In this position paper, we review our contemporary understanding of societal, patient-related, and basic science-related challenges in order to provide a reasoned roadmap for the future to deal with this compelling and urgent healthcare problem.


Subject(s)
Aging/physiology , Musculoskeletal System/physiopathology , Regenerative Medicine/methods , Animals , Comorbidity , Disease Models, Animal , Humans , Regeneration/physiology
14.
Eur J Pharm Sci ; 49(2): 251-7, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23466666

ABSTRACT

Hypoxia modulates the production of proteins involved in e.g. inflammation, angiogenesis and glucose utilization and hypoxia may therefore be an important factor underlying adipose tissue dysfunction in obesity. Resveratrol (RSV) is a natural polyphenolic compound and has been shown to have powerful anti-inflammatory effects and beneficial effects on several obesity-related complications. Thus, in the present study we investigated whether RSV has effects on hypoxic markers (GLUT-1, VEGF), hypoxia-induced key markers of inflammation (IL8, IL6), and leptin in human adipose tissue in vitro. Hypoxia was induced by incubating human adipose tissue fragments with 1% O2 for 24h as compared to 21% O2 The gene expressions were investigated by RT-PCR and protein release by Elisa. Hypoxia increases the expression of glucose transporter-1 (GLUT-1) (19-fold, p<0.001), vascular endothelial growth factor (VEGF) (10-fold, p<0.05), interleukin-8 (IL8) (8-fold, p<0.05), interleukin-6 (IL6) (5-fold, p<0.05) and leptin (9-fold). The protein levels of VEGF released to the medium was increased (8-fold, p<0.01) by hypoxia. RSV dose-dependently inhibited several of these hypoxia-induced expressions and at a concentration of 50 µM RSV almost completely inhibited the hypoxic responses at the above mentioned gene expression levels (p<0.05-p<0.001) and significantly attenuated the hypoxia-induced protein releases by 50-60%. These results demonstrate that hypoxia induces extensive changes in human adipose tissue in the expression and release of inflammation and angiogenesis-related adipokines. In addition the inhibition of hypoxia-mediated inflammation and angiogenesis might represent a novel mechanism of RSV in preventing obesity-related pathologies.


Subject(s)
Adipose Tissue/drug effects , Angiogenesis Inhibitors/pharmacology , Anti-Inflammatory Agents/pharmacology , Hypoxia/metabolism , Stilbenes/pharmacology , Adipose Tissue/blood supply , Adipose Tissue/metabolism , Adult , Female , Glucose Transporter Type 1/genetics , Humans , In Vitro Techniques , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Leptin/genetics , Neovascularization, Physiologic/physiology , RNA, Messenger/metabolism , Resveratrol , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
15.
Acta Orthop ; 82(2): 234-40, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21434761

ABSTRACT

BACKGROUND AND PURPOSE: In vitro expansion of autologous chondrocytes is an essential part of many clinically used cartilage repair treatments. Native chondrocytes reside in a 3-dimensional (3D) network and are exposed to low levels of oxygen. We compared monolayer culture to combined 3D and hypoxic culture using quantitative gene expression analysis. METHODS: Cartilage biopsies were collected from the intercondylar groove in the distal femur from 12 patients with healthy cartilage. Cells were used for either monolayer or scaffold culture. The scaffolds were clinically available MPEG-PLGA scaffolds (ASEED). After harvesting of cells for baseline investigation, the remainder was divided into 3 groups for incubation in conditions of normoxia (21% oxygen), hypoxia (5% oxygen), or severe hypoxia (1% oxygen). RNA extractions were performed 1, 2, and 6 days after the baseline time point, respectively. Quantitative RT-PCR was performed using assays for RNA encoding collagen types 1 and 2, aggrecan, sox9, ankyrin repeat domain-37, and glyceraldehyde-3-phosphate dehydrogenase relative to 2 hypoxia-stable housekeeping genes. RESULTS: Sox9, aggrecan, and collagen type 2 RNA expression increased with reduced oxygen. On day 6, the expression of collagen type 2 and aggrecan RNA was higher in 3D culture than in monolayer culture. INTERPRETATION: Our findings suggest that there was a combined positive effect of 3D culture and hypoxia on cartilage-specific gene expression. The positive effects of 3D culture alone were not detected until day 6, suggesting that seeding of chondrocytes onto a scaffold for matrix-assisted chondrocyte implantation should be performed earlier than 2 days before implantation.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/cytology , Aggrecans/biosynthesis , Cartilage, Articular/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Hypoxia , Chondrocytes/metabolism , Chondrocytes/transplantation , Collagen Type II/biosynthesis , Gene Expression/physiology , Humans , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , SOX9 Transcription Factor/biosynthesis , Tissue Engineering
16.
J Fish Biol ; 75(10): 2768-76, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20738522

ABSTRACT

Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.


Subject(s)
Auditory Threshold/physiology , Evoked Potentials, Auditory , Hearing/physiology , Sharks/physiology , Animals
17.
Oecologia ; 145(4): 541-8, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16010535

ABSTRACT

Few studies of phenotypic selection have focused on physiological traits, especially in natural populations. The adaptive significance of plant water-use efficiency, the ratio of photosynthesis to water loss through transpiration, has rarely been examined. In this study, carbon isotopic discrimination, Delta, an integrated measure of water-use efficiency, was repeatedly measured in juveniles and adults in a natural population of the herbaceous desert perennial Cryptantha flava over a 4-year period and examined for plasticity in Delta, consistency between years in values of Delta, and evidence for selection on Delta phenotypes. There was significant concordance in Delta values among the 4 years for adult plants and significant correlations in Delta values measured in different years for juveniles and adults combined. The wettest year of the study, 1998, proved an exception because Delta values that year were not correlated with Delta values in any other year of the study. Consistency in Delta measured on the same plants in different years could indicate genotypic variation and/or consistency in the water status of the microhabitats the plants occupied. Two forms of plasticity in Delta were also evident; mean seasonal values were correlated with precipitation the preceding autumn, and Delta values also declined with plant size, indicating increasing water-use efficiency. Phenotypic selection was evident because in the first year of the study juvenile plants that would survive until year five averaged lower Delta values than did those that failed to survive. During the driest year, 2000, Delta was significantly negatively correlated with adult plant size, measured as the number of leaf rosettes, but the negative relationship between Delta and the number of flowering stalks, a more direct measure of fitness, was not significant. These results suggest that the direction of phenotypic selection on Delta changes as plants grow.


Subject(s)
Boraginaceae/physiology , Carbon Isotopes/analysis , Disasters , Plant Leaves/physiology , Rain , Seasons , Utah , Water/metabolism
18.
J Acquir Immune Defic Syndr ; 38(3): 296-300, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15735447

ABSTRACT

BACKGROUND: The initial rate of plasma HIV-1 RNA (pVL) decline has been proposed as a marker of early efficacy of antiretroviral therapy (ART) and a possible predictor of late efficacy. We compared the rate of pVL decline in patients starting ART with nevirapine (NVP), efavirenz (EFV), or both drugs combined in addition to lamivudine (3TC) and stavudine (d4T). METHODS: Analysis of the viral decay constant (VDc) during the first 2 weeks of treatment in patients enrolled in the 2NN study who remained on allocated treatment. RESULTS: The median VDc (log10 copies per day, [interquartile range]) was similar for NVP (0.30 [0.25-0.36], EFV (0.31 [0.27-0.37]), and NVP + EFV (0.30 [0.27-0.36]). Patients with a baseline pVL >100,000 copies/mL were 8.7 (95% confidence interval [CI]: 6.2-12.3) times more likely to have a VDc >75th percentile. A high VDc was not associated with plasma drug concentration or with a decreased risk of virologic failure at week 48 after the start of therapy (hazard ratio = 0.8, 95% CI: 0.6-1.2). CONCLUSION: NVP, EFV, or NVP + EFV in combination with 3TC and d4T show similar rates of pVL decline during the first 2 weeks of treatment. The VDc with these regimens is not predictive of late virologic efficacy.


Subject(s)
Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , Nevirapine/therapeutic use , Oxazines/therapeutic use , RNA, Viral/blood , Adult , Alkynes , Anti-HIV Agents/pharmacology , Benzoxazines , Cyclopropanes , Drug Therapy, Combination , Female , HIV Infections/virology , Humans , Kinetics , Lamivudine/pharmacology , Lamivudine/therapeutic use , Male , Nevirapine/pharmacology , Oxazines/pharmacology , Proportional Hazards Models , Stavudine/pharmacology , Stavudine/therapeutic use , Treatment Outcome
20.
Am J Bot ; 85(12): 1680-7, 1998 Dec.
Article in English | MEDLINE | ID: mdl-21680329

ABSTRACT

An experimental approach was used to examine the effects of spatial nutrient heterogeneity and planting density on the sizes of plants within populations of Abutilon theophrasti. Planting locations were generated using random numbers and replicated among populations growing on two different scales of heterogeneity and homogeneous soils. The same quantity of nutrients (dehydrated cow manure) was added to each population, regardless of the spatial nutrient distribution. The higher density was achieved by adding additional planting locations to those present at the lower density. Plant biomass was compared among ten planting locations present in all populations. Plants in seven locations were smaller at the higher density, but the spatial distribution of nutrients affected plant size in only two locations. At the population level, the higher density reduced mean plant biomass and increased both total biomass and the coefficient of variation in biomass, a measure of size inequality. Only when populations on both scales of heterogeneity were together compared with those on homogeneous soils were population-level measurements found to be significantly affected by soil treatment; heterogeneity resulted in decreased total biomass and an increase in the coefficient of variation, apparently due to an increase in the number of small plants in the population. These results, together with the finding that fine root biomass increased in nutrient-enriched patches, suggest that on heterogeneous soils most plants were able to access nutrient patches.

SELECTION OF CITATIONS
SEARCH DETAIL
...