Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 43(16): 4935-43, 2004 Aug 09.
Article in English | MEDLINE | ID: mdl-15285670

ABSTRACT

The striking difference in cytotoxic activity between the inactive cis-[Ru(bpy)(2)Cl(2)] and the recently reported highly cytotoxic alpha-[Ru(azpy)(2)Cl(2)] (alpha indicating the isomer in which the coordinating Cl atoms, pyridine nitrogens, and azo nitrogens are in mutual cis, trans, cis orientation) encouraged the synthesis of the mixed-ligand compound cis-[Ru(azpy)(bpy)Cl(2)]. The synthesis and characterization of the only occurring isomer, i.e., alpha-[Ru(azpy)(bpy)Cl(2)], 1 (alpha denoting the isomer in which the Cl ligands are cis related to each other and the pyridine ring of azpy is trans to the pyridine ring of bpy), are described. The solid-state structure of 1 has been determined by X-ray structure analysis. The IC(50) values obtained for several human tumor cell lines have indicated that compound 1 shows mostly a low to moderate cytotoxicity. The binding of the DNA model base 9-ethylguanine (9-EtGua) to the hydrolyzed species of 1 has been studied and compared to DNA model base binding studies of cis-[Ru(bpy)(2)Cl(2)] and alpha-[Ru(azpy)(2)Cl(2)]. The completely hydrolyzed species of 1, i.e., alpha-[Ru(azpy)(bpy)(H(2)O)(2)](2+), has been reacted with 9-EtGua in water at room temperature for 24 h. This resulted in the monofunctional binding of only one 9-EtGua, coordinated via the N7 atom. The product has been isolated as alpha-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2), 2, and characterized by 2D NOESY NMR spectroscopy. The NOE data show that the 9-EtGua coordinates (under these conditions) at the position trans to the azo nitrogen atom. Surprisingly, time-dependent (1)H NMR data of the 9-EtGua adduct 2 in acetone-d(6) show an unprecedented positional shift of the 9-EtGua from the position trans to the azo nitrogen to the position trans to the bpy nitrogen atom, resulting in the adduct alpha'-[Ru(azpy)(bpy)(9-EtGua)(H(2)O)](PF(6))(2) (alpha' indicating 9-EtGua is trans to the bpy nitrogen). This positional isomerization of 9-EtGua is correlated to the cytotoxicity of 1 in comparison to both the cytotoxicity and 9-EtGua coordination of cis-[Ru(bpy)(2)Cl(2)], alpha-[Ru(azpy)(2)Cl(2)], and beta-[Ru(azpy)(2)Cl(2)]. This positional isomerization process is unprecedented in model base metal chemistry and could be of considerable biological significance.


Subject(s)
Guanine/analogs & derivatives , Guanine/chemistry , Models, Molecular , Organometallic Compounds/chemical synthesis , Ruthenium/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Ligands , Magnetic Resonance Spectroscopy , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Structure-Activity Relationship , Tumor Cells, Cultured
2.
J Biol Inorg Chem ; 9(3): 354-64, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15034769

ABSTRACT

The dichlorobis(2-phenylazopyridine)ruthenium(II) complexes, [Ru(azpy)(2)Cl(2)], are under renewed investigation due to their potential anticancer activity. The three most common isomers alpha-, beta- and gamma-[RuL(2)Cl(2)] with L= o-tolylazopyridine (tazpy) and 4-methyl-2-phenylazopyridine (mazpy) (alpha indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, trans, cis positions, beta indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual cis, cis, cis positions, and gamma indicating the coordinating Cl, N(pyridine) and Nazo atoms in mutual trans, cis, cis positions) are synthesized and characterized by NMR spectroscopy. The molecular structures of gamma-[Ru(tazpy)(2)Cl(2)] and alpha-[Ru(mazpy)(2)Cl(2)] are determined by X-ray diffraction analysis. The IC(50) values of the geometrically isomeric [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] complexes compared with those of the parent [Ru(azpy)(2)Cl(2)] complexes are determined in a series of human tumour cell lines (MCF-7, EVSA-T, WIDR, IGROV, M19, A498 and H266). These data unambiguously show for all complexes the following trend: the alpha isomer shows a very high cytotoxicity, whereas the beta isomer is a factor 10 less cytotoxic. The gamma isomers of [Ru(tazpy)(2)Cl(2)] and [Ru(mazpy)(2)Cl(2)] display a very high cytotoxicity comparable to that of the gamma isomer of the parent compound [Ru(azpy)(2)Cl(2)] and to that of the alpha isomer. These biological data are of the utmost importance for a better understanding of the structure-activity relationships for the isomeric [RuL(2)Cl(2)] complexes.


Subject(s)
Growth Inhibitors/chemistry , Growth Inhibitors/toxicity , Pyridines/chemistry , Pyridines/toxicity , Ruthenium Compounds/chemistry , Ruthenium Compounds/toxicity , Antineoplastic Agents/chemistry , Antineoplastic Agents/toxicity , Cell Death/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Humans , Isomerism , Nuclear Magnetic Resonance, Biomolecular , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...