Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
EBioMedicine ; 104: 105170, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823088

ABSTRACT

BACKGROUND: Ebola virus disease (EVD) survivors experience ocular sequelae including retinal lesions, cataracts, and vision loss. While monoclonal antibodies targeting the Ebola virus glycoprotein (EBOV-GP) have shown promise in improving prognosis, their effectiveness in mitigating ocular sequelae remains uncertain. METHODS: We developed and characterized a BSL-2-compatible immunocompetent mouse model to evaluate therapeutics targeting EBOV-GP by inoculating neonatal mice with vesicular stomatitis virus expressing EBOV-GP (VSV-EBOV). To examine the impact of anti-EBOV-GP antibody treatment on acute retinitis and ocular sequelae, VSV-EBOV-infected mice were treated with polyclonal antibodies or monoclonal antibody preparations with antibody-dependent cellular cytotoxicity (ADCC-mAb) or neutralizing activity (NEUT-mAb). FINDINGS: Treatment with all anti-EBOV-GP antibodies tested dramatically reduced viremia and improved survival. Further, all treatments reduced the incidence of cataracts. However, NEUT-mAb alone or in combination with ADCC-mAb reduced viral load in the eyes, downregulated the ocular immune and inflammatory responses, and minimized retinal damage more effectively. INTERPRETATION: Anti-EBOV-GP antibodies can improve survival among EVD patients, but improved therapeutics are needed to reduce life altering sequelae. This animal model offers a new platform to examine the acute and long-term effect of the virus in the eye and the relative impact of therapeutic candidates targeting EBOV-GP. Results indicate that even antibodies that improve systemic viral clearance and survival can differ in their capacity to reduce acute ocular inflammation, and long-term retinal pathology and corneal degeneration. FUNDING: This study was partly supported by Postgraduate Research Fellowship Awards from ORISE through an interagency agreement between the US DOE and the US FDA.

2.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38712203

ABSTRACT

The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis (C. mast) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast-responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells.

3.
Proc Natl Acad Sci U S A ; 121(5): e2311487121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38261611

ABSTRACT

Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.


Subject(s)
Antigen Presentation , Receptors, Antigen, T-Cell , Animals , Mice , Autoantigens , Disease Models, Animal , Mice, Inbred Strains , Mice, Transgenic
4.
JCI Insight ; 8(23)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37917882

ABSTRACT

The selective targeting of pathogenic T cells is a holy grail in the development of new therapeutics for T cell-mediated disorders, including many autoimmune diseases and graft versus host disease. We describe the development of a CD6-targeted antibody-drug conjugate (CD6-ADC) by conjugating an inactive form of monomethyl auristatin E (MMAE), a potent mitotic toxin, onto a mAb against CD6, an established T cell surface marker. Even though CD6 is present on all T cells, only the activated (pathogenic) T cells vigorously divide and thus are susceptible to the antimitotic MMAE-mediated killing via the CD6-ADC. We found CD6-ADC selectively killed activated proliferating human T cells and antigen-specific mouse T cells in vitro. Furthermore, in vivo, whereas the CD6-ADC had no significant detrimental effect on normal T cells in naive CD6-humanized mice, the same dose of CD6-ADC, but not the controls, efficiently treated 2 preclinical models of autoimmune uveitis and a model of graft versus host disease. These results provide evidence suggesting that CD6-ADC could be further developed as a potential therapeutic agent for the selective elimination of pathogenic T cells and treatment of many T cell-mediated disorders.


Subject(s)
Autoimmune Diseases , Graft vs Host Disease , Immunoconjugates , Humans , Animals , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , CD3 Complex , T-Lymphocytes , Autoimmune Diseases/drug therapy , Graft vs Host Disease/drug therapy
5.
Invest Ophthalmol Vis Sci ; 64(14): 43, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38019490

ABSTRACT

Purpose: Using the model of experimental autoimmune uveitis (EAU) induced by immunization with a retinal antigen, two studies have reported contradictory results on disease development following oral antibiotic treatment (ABX). We showed that long-term ABX did not affect EAU, but another study showed that short-term ABX was protective. We therefore studied the effects of ABX on EAU, gut microbiota, and host immune responses as a function of treatment duration. Methods: EAU-susceptible mice were treated orally with broad-spectrum antibiotics starting at least 10 weeks (long-term) or 1 week (short-term) before immunization until termination of the experiment. Gut microbiota were characterized by 16S amplicon sequencing, and host gut immune elements were studied phenotypically and functionally. Results: Long-term ABX had no effect, whereas short-term ABX delayed EAU, as previously reported by us and others, respectively. Microbial sequencing revealed progressive reduction of gut microbiota that showed some differences in the two ABX groups. Interestingly, duration of ABX was associated with a gradual disappearance of the CD4+ and CD4+CD8+ subset of gut intraepithelial lymphocytes (IELs). This IEL subset is microbiota dependent and is absent in germ-free mice. Relative abundance of Lactobacillus reuteri correlated with the frequencies of CD4+CD8+ IELs. IELs suppressed antigen-specific activation of autoreactive T cells in culture. Conclusions: Gut microbiota may play dual roles in uveitis development: They promote EAU development but also help maintain IEL populations that have regulatory function against autoreactive T cells. We propose that the progressive loss of this population during long-term ABX reverses the EAU-ameliorating effects of microbiota depletion.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Uveitis , Animals , Mice , Immunization , Administration, Oral , Anti-Bacterial Agents , Uveitis/prevention & control
6.
bioRxiv ; 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-37090642

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia worldwide, but there are limited therapeutic options and no current cure. While the involvement of microglia in AD has been highly appreciated, the role of other innate and adaptive immune cells remains largely unknown, partly due to their scarcity and heterogeneity. This study aimed to study non-microglial immune cells in wild type and AD-transgenic mouse brains across different ages. Our results uncovered the presence of a unique CD8+ T cell population that were selectively increased in aging AD mouse brains, here referred to as "disease-associated T cells (DATs)". These DATs were found to express an elevated tissue-resident memory and Type I interferon-responsive gene signature. Further analysis of aged AD mouse brains showed that these CD8+ T cells were not present in peripheral or meningeal tissues. Preventing CD8+ T cell development in AD-transgenic mice via genetic deletion of beta-2 microglobulin ( B2m ) led to a reduction of amyloid-ß plaque formation in aged mice, and improved memory in AD-transgenic mice as early as four months of age. The integration of transcriptomic and epigenomic profiles at the single-cell level revealed potential transcription factors that reshape the regulomes of CD8+ T cells. These findings highlight a critical role for DATs in the progression of AD and provide a new avenue for treatment.

7.
Article in English | MEDLINE | ID: mdl-37080596

ABSTRACT

BACKGROUND AND OBJECTIVES: Alteration of the blood-brain barrier (BBB) at the interface between blood and CNS parenchyma is prominent in most neuroinflammatory diseases. In several neurologic diseases, including cerebral malaria and Susac syndrome, a CD8 T cell-mediated targeting of endothelial cells of the BBB (BBB-ECs) has been implicated in pathogenesis. METHODS: In this study, we used an experimental mouse model to evaluate the ability of a small-molecule perforin inhibitor to prevent neuroinflammation resulting from cytotoxic CD8 T cell-mediated damage of BBB-ECs. RESULTS: Using an in vitro coculture system, we first identified perforin as an essential molecule for killing of BBB-ECs by CD8 T cells. We then found that short-term pharmacologic inhibition of perforin commencing after disease onset restored motor function and inhibited the neuropathology. Perforin inhibition resulted in preserved BBB-EC viability, maintenance of the BBB, and reduced CD8 T-cell accumulation in the brain and retina. DISCUSSION: Therefore, perforin-dependent cytotoxicity plays a key role in the death of BBB-ECs inflicted by autoreactive CD8 T cells in a preclinical model and potentially represents a therapeutic target for CD8 T cell-mediated neuroinflammatory diseases, such as cerebral malaria and Susac syndrome.


Subject(s)
Malaria, Cerebral , Susac Syndrome , Mice , Animals , Perforin , Neuroinflammatory Diseases , Endothelial Cells , Mice, Knockout , CD8-Positive T-Lymphocytes , Disease Models, Animal
8.
Ocul Surf ; 28: 79-89, 2023 04.
Article in English | MEDLINE | ID: mdl-36758675

ABSTRACT

PURPOSE: Previously, using a murine model, we reported that contact lens (CL) wear induced corneal parainflammation involving CD11c+ cells after 24 h and Ly6G+ cells (neutrophils) after 5-6 days. Here, we investigated the role of IL-17 and γδ T cells in the CL-induced neutrophil response. METHODS: CL-wearing C57BL/6 wild-type (WT) mice were compared to lens-wearing IL-17A/F single or double gene knock-out mice, or mice treated with UC7-13D5 monoclonal antibody to functionally deplete γδ T cells. Contralateral eyes served as no lens wear controls. Corneal Ly6G+ and γδ T cell responses were quantified as was expression of genes encoding pro-inflammatory cytokines IL-17A/F, IL-ß, IL-18 and expression of IL-17A/F protein. RESULTS: After 6 days lens wear, WT corneas showed Ly6G+ cell infiltration while remaining free of visible pathology. In contrast, lens-wearing corneas of IL-17AF (-/-), IL-17A (-/-) mice and γδ T cell-depleted mice showed little or no Ly6G+ cell infiltration. No Ly6G+ cell infiltration was detected in contralateral eye controls. Lens-wearing WT corneas also showed a significant increase in γδ T cells after 24 h that was maintained after 6 days of wear, and significantly increased cytokine gene expression after 6 days versus contralateral controls: IL-18 & IL-17A (∼3.9 fold) and IL-23 (∼6.5-fold). Increased IL-17A protein (∼4-fold) was detected after 6 days lens wear. γδ T cell-depletion abrogated these lens-induced changes in cytokine gene and protein expression. CONCLUSION: Together, these data show that IL-17A and γδ T cells are required for Ly6G+ cell (neutrophil) infiltration of the cornea during contact lens-induced parainflammation.


Subject(s)
Contact Lenses , Interleukin-17 , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-18/metabolism , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Cornea/metabolism , Cytokines/metabolism , Mice, Knockout
9.
Mucosal Immunol ; 15(6): 1143-1157, 2022 06.
Article in English | MEDLINE | ID: mdl-36002743

ABSTRACT

The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Humans , Meibomian Glands , Conjunctiva , Mucous Membrane , Tears/physiology
10.
JCI Insight ; 7(18)2022 09 22.
Article in English | MEDLINE | ID: mdl-35951427

ABSTRACT

Cub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells. CDCP1-KO mice developed attenuated retinal inflammation in a passive model of autoimmune uveitis, with disrupted tight junctions and infiltrating T cells detected in RPE flat mounts from WT but not CDCP1-KO mice during EAU development. Mechanistically, we discovered that CDCP1 on RPE cells was upregulated by IFN-γ in vitro and after EAU induction in vivo. CD6 stimulation induced increased RPE barrier permeability of WT but not CDCP1-knockdown (CDCP1-KD) RPE cells, and activated T cells migrated through WT RPE monolayers more efficiently than the CDCP1-KD RPE monolayers. In addition, CD6 stimulation of WT but not the CDCP1-KD RPE cells induced massive stress fiber formation and focal adhesion disruption to reduce cell barrier tight junctions. These data suggest that CDCP1 on RPE cells interacts with CD6 on T cells to induce RPE cytoskeleton remodeling and focal adhesion disruption, which open up the tight junctions to facilitate T cell infiltration for the development of uveitis.


Subject(s)
Antigens, Neoplasm , Cell Adhesion Molecules , Retinal Pigments , Uveitis , Animals , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Humans , Inflammation/metabolism , Mice , Retina/pathology , Retinal Pigments/metabolism , Tight Junctions/metabolism , Uveitis/metabolism , Uveitis/pathology
11.
Microbiol Resour Announc ; 11(6): e0018722, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35536012

ABSTRACT

Here, we report the genome sequence of a protective commensal, Corynebacterium mastitidis RC, isolated from mouse conjunctiva. The C. mastitidis RC genome sequence is 2,153,054 bp in size and 96.95% complete, and we believe that it can contribute to the understanding of the functional immune attributes of the ocular commensal microbiome.

12.
FASEB J ; 36(1): e21995, 2022 01.
Article in English | MEDLINE | ID: mdl-34874579

ABSTRACT

While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune resolution is occurring at D26. 3D surface rendering image analytics of confocal z-stacks and scanning electron microscopy imaging of the lens surface show the degradation of the lens capsule as these lens-associated immune cells integrate with and invade the lens capsule, with a subset infiltrating both epithelial and fiber cell regions of lens tissue, abrogating its immune privilege. Those immune cells that remain on the surface often become entwined with a fibrillar net-like structure. Immune cell invasion of the lens capsule in uveitis has not been described previously and may play a role in induction of lens and other eye pathologies associated with autoimmunity.


Subject(s)
Autoimmune Diseases/immunology , Cell Movement/immunology , Extracellular Matrix/immunology , Lens, Crystalline/immunology , Macrophages/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/pathology , Lens, Crystalline/pathology , Macrophages/pathology , Mice , Uveitis/pathology
13.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782464

ABSTRACT

Regulatory B cells (Breg cells) that secrete IL-10 or IL-35 (i35-Breg) play key roles in regulating immunity in tumor microenvironment or during autoimmune and infectious diseases. Thus, loss of Breg function is implicated in development of autoimmune diseases while aberrant elevation of Breg prevents sterilizing immunity, exacerbates infectious diseases, and promotes cancer metastasis. Breg cells identified thus far are largely antigen-specific and derive mainly from B2-lymphocyte lineage. Here, we describe an innate-like IL-27-producing natural regulatory B-1a cell (i27-Breg) in peritoneal cavity and human umbilical cord blood. i27-Bregs accumulate in CNS and lymphoid tissues during neuroinflammation and confers protection against CNS autoimmune disease. i27-Breg immunotherapy ameliorated encephalomyelitis and uveitis through up-regulation of inhibitory receptors (Lag3, PD-1), suppression of Th17/Th1 responses, and propagating inhibitory signals that convert conventional B cells to regulatory lymphocytes that secrete IL-10 and/or IL-35 in eye, brain, or spinal cord. Furthermore, i27-Breg proliferates in vivo and sustains IL-27 secretion in CNS and lymphoid tissues, a therapeutic advantage over administering biologics (IL-10, IL-35) that are rapidly cleared in vivo. Mutant mice lacking irf4 in B cells exhibit exaggerated increase of i27-Bregs with few i35-Bregs, while mice with loss of irf8 in B cells have abundance of i35-Bregs but defective in generating i27-Bregs, identifying IRF8/BATF and IRF4/BATF axis in skewing B cell differentiation toward i27-Breg and i35-Breg developmental programs, respectively. Consistent with its developmental origin, disease suppression by innate i27-Bregs is neither antigen-specific nor disease-specific, suggesting that i27-Breg would be effective immunotherapy for a wide spectrum of autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Central Nervous System Diseases/immunology , Interleukin-27/metabolism , Neuroinflammatory Diseases/immunology , Animals , B-Lymphocytes, Regulatory/immunology , Cell Differentiation , Encephalitis , Interferon Regulatory Factors , Interleukin-10 , Mice , Uveitis/immunology
14.
Mol Vis ; 26: 641-651, 2020.
Article in English | MEDLINE | ID: mdl-33088168

ABSTRACT

Purpose: Tofacitinib is a pan-Janus kinase (JAK) inhibitor that suppresses cytokine signaling and in turn, the cells that participate in inflammatory immunopathogenic processes. We examined the capacity of tofacitinib to inhibit the induction of experimental autoimmune uveitis (EAU) and related immune responses. Methods: EAU was induced in B10.A mice with immunization with bovine interphotoreceptor retinoid-binding protein (IRBP), emulsified in complete Freund's adjuvant (CFA), and a simultaneous injection of pertussis toxin. Tofacitinib, 25 mg/kg, was administered daily, and the vehicle was used for control. EAU development was assessed by histological analysis of the mouse eyes, and related immune responses were assessed by (i) the levels of interferon (IFN)-γ and interleukin (IL)-17, secreted by spleen cells cultured with IRBP; (ii) flow cytometric analysis of intracellular expression by spleen, or eye-infiltrating CD4 or CD8 cells of IFN-γ, IL-17, and their transcription factors, T-bet and RORγt. In addition, the inflammation-related cell markers CD44 and CD62L and Ki67, a proliferation marker, were tested. The proportions of T-regulatory cells expressing FoxP3 were determined by flow cytometric intracellular staining, while levels of antibody to IRBP were measured with enzyme-linked immunosorbent assay (ELISA). Results: Treatment with tofacitinib significantly suppressed the development of EAU and reduced the levels of secreted IFN-γ, but not of IL-17. Further, treatment with tofacitinib reduced in the spleen and eye-infiltrating cells the intracellular expression of IFN-γ and its transcription factor T-bet. In contrast, treatment with tofacitinib had essentially no effect on the intracellular expression of IL-17 and its transcription factor, RORγt. The selective effect of tofacitinib treatment was particularly evident in the CD8 population. Treatment with tofacitinib also increased the population of CD44, but reduced the populations of cells producing CD62L and Ki67. Treatment with tofacitinib had no effect on the proportion of FoxP3 producing regulatory cells and on the antibody production to IRBP. Conclusions: Treatment with tofacitinib inhibited the development of EAU, reduced the production of IFN-γ, but had essentially no effect on the production of IL-17.


Subject(s)
Eye/metabolism , Piperidines/pharmacology , Pyrimidines/pharmacology , Th1 Cells/drug effects , Th17 Cells/drug effects , Uveitis/drug therapy , Uveitis/immunology , Animals , CD4 Antigens/blood , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/blood , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Eye/drug effects , Eye/pathology , Eye Proteins/pharmacology , Forkhead Transcription Factors/blood , Hyaluronan Receptors/blood , Immunosuppression Therapy , Interferon-gamma/blood , Interleukin-17/blood , Ki-67 Antigen/blood , L-Selectin/blood , Mice , Piperidines/administration & dosage , Pyrimidines/administration & dosage , Retinol-Binding Proteins/pharmacology , Th1 Cells/immunology , Th17 Cells/immunology
15.
Nat Commun ; 11(1): 5406, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33106495

ABSTRACT

Mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) cause Blau syndrome, an inflammatory disorder characterized by uveitis. The antimicrobial functions of Nod2 are well-established, yet the cellular mechanisms by which dysregulated Nod2 causes uveitis remain unknown. Here, we report a non-conventional, T cell-intrinsic function for Nod2 in suppression of Th17 immunity and experimental uveitis. Reconstitution of lymphopenic hosts with Nod2-/- CD4+ T cells or retina-specific autoreactive CD4+ T cells lacking Nod2 reveals a T cell-autonomous, Rip2-independent mechanism for Nod2 in uveitis. In naive animals, Nod2 operates downstream of TCR ligation to suppress activation of memory CD4+ T cells that associate with an autoreactive-like profile involving IL-17 and Ccr7. Interestingly, CD4+ T cells from two Blau syndrome patients show elevated IL-17 and increased CCR7. Our data define Nod2 as a T cell-intrinsic rheostat of Th17 immunity, and open new avenues for T cell-based therapies for Nod2-associated disorders such as Blau syndrome.


Subject(s)
Nod2 Signaling Adaptor Protein/immunology , Th17 Cells/immunology , Uveitis/immunology , Uveitis/prevention & control , Animals , Arthritis/genetics , Arthritis/immunology , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/genetics , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Sarcoidosis , Synovitis/genetics , Synovitis/immunology , Uveitis/genetics
16.
Immunity ; 53(2): 384-397.e5, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32673565

ABSTRACT

Dysregulated Th17 cell responses underlie multiple inflammatory and autoimmune diseases, including autoimmune uveitis and its animal model, EAU. However, clinical trials targeting IL-17A in uveitis were not successful. Here, we report that Th17 cells were regulated by their own signature cytokine, IL-17A. Loss of IL-17A in autopathogenic Th17 cells did not reduce their pathogenicity and instead elevated their expression of the Th17 cytokines GM-CSF and IL-17F. Mechanistic in vitro studies revealed a Th17 cell-intrinsic autocrine loop triggered by binding of IL-17A to its receptor, leading to activation of the transcription factor NF-κB and induction of IL-24, which repressed the Th17 cytokine program. In vivo, IL-24 treatment ameliorated Th17-induced EAU, whereas silencing of IL-24 in Th17 cells enhanced disease. This regulatory pathway also operated in human Th17 cells. Thus, IL-17A limits pathogenicity of Th17 cells by inducing IL-24. These findings may explain the disappointing therapeutic effect of targeting IL-17A in uveitis.


Subject(s)
Cytokines/metabolism , Interleukin-17/metabolism , Th17 Cells/pathology , Uveitis/pathology , Adult , Animals , Cytokines/genetics , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Interleukin-17/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism , Th17 Cells/immunology , Uveitis/immunology , Young Adult
17.
J Autoimmun ; 114: 102507, 2020 11.
Article in English | MEDLINE | ID: mdl-32593472

ABSTRACT

IFN-γ and IL-17A can each elicit ocular autoimmunity independently of the other. Since absence of IFN-γ or IL-17A individually failed to abolish pathology of experimental autoimmune uveitis (EAU), we examined EAU development in the absence of both these cytokines. Ifng-/-Il17a-/- mice were fully susceptible to EAU with a characteristic eosinophilic ocular infiltrate, as opposed to a mononuclear infiltrate in WT mice. Retinal pathology in double-deficient mice was ameliorated when eosinophils were genetically absent or their migration was blocked, supporting a pathogenic role for eosinophils in EAU in the concurrent absence of IFN-γ and IL-17A. In EAU-challenged Ifng-/-Il17a-/- mice, ocular infiltrates contained increased GM-CSF-producing CD4+ T cells, and supernatants of retinal antigen-stimulated splenocytes contained enhanced levels of GM-CSF that contributed to activation and migration of eosinophils in vitro. Systemic or local blockade of GM-CSF ameliorated EAU in Ifng-/-Il17a-/- mice, reduced eosinophil peroxidase levels in the eye and in the serum and decreased eosinophil infiltration to the eye. These results support the interpretation that, in the concurrent absence of IFN-γ and IL-17A, GM-CSF takes on a major role as an inflammatory effector cytokine and drives an eosinophil-dominant pathology. Our findings may impact therapeutic strategies aiming to target IFN-γ and IL-17A in autoimmune uveitis.


Subject(s)
Autoimmunity , Eosinophilia/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Retinitis/etiology , Retinitis/metabolism , Animals , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Disease Models, Animal , Disease Susceptibility/immunology , Eosinophils/immunology , Eosinophils/metabolism , Eosinophils/pathology , Interferon-gamma/genetics , Interleukin-17/genetics , Mice , Mice, Knockout , Retinitis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
18.
Elife ; 92020 03 02.
Article in English | MEDLINE | ID: mdl-32118582

ABSTRACT

The eicosanoid lipoxin A4 (LXA4) has emerging roles in lymphocyte-driven diseases. We identified reduced LXA4 levels in posterior segment uveitis patients and investigated the role of LXA4 in the pathogenesis of experimental autoimmune uveitis (EAU). Immunization for EAU with a retinal self-antigen caused selective downregulation of LXA4 in lymph nodes draining the site of immunization, while at the same time amplifying LXA4 in the inflamed target tissue. T cell effector function, migration and glycolytic responses were amplified in LXA4-deficient mice, which correlated with more severe pathology, whereas LXA4 treatment attenuated disease. In vivo deletion or supplementation of LXA4 identified modulation of CC-chemokine receptor 7 (CCR7) and sphingosine 1- phosphate receptor-1 (S1PR1) expression and glucose metabolism in CD4+ T cells as potential mechanisms for LXA4 regulation of T cell effector function and trafficking. Our results demonstrate the intrinsic lymph node LXA4 pathway as a significant checkpoint in the development and severity of adaptive immunity.


Subject(s)
Autoimmunity/physiology , Eye/immunology , Lipoxins/physiology , Lymph Nodes/physiology , Retina/immunology , Animals , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Case-Control Studies , Homeostasis , Humans , Lipoxins/biosynthesis , Lipoxins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CCR7/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Uveitis/immunology
19.
Front Immunol ; 11: 583510, 2020.
Article in English | MEDLINE | ID: mdl-33569048

ABSTRACT

Non-infectious uveitis, a common cause of blindness in man, is often mediated by autoimmunity, a process in which cytokines play major roles. The biosynthesis and secretion of pro-inflammatory cytokines are regulated in part by tristetraprolin (TTP), an endogenous anti-inflammatory protein that acts by binding directly to specific sequence motifs in the 3'-untranslated regions of target mRNAs, promoting their turnover, and inhibiting synthesis of their encoded proteins. We recently developed a TTP-overexpressing mouse (TTPΔARE) by deleting an AU-rich element (ARE) instability motif from the TTP mRNA, resulting in increased accumulation of TTP mRNA and protein throughout the animal. Here, we show that homozygous TTPΔARE mice are resistant to the induction of experimental autoimmune uveitis (EAU) induced by interphotoreceptor retinoid-binding protein (IRBP), an established model for human autoimmune (noninfectious) uveitis. Lymphocytes from TTPΔARE mice produced lower levels of the pro-inflammatory cytokines IFN-γ, IL-17, IL-6, and TNFα than wild type (WT) mice. TTPΔARE mice also produced lower titers of antibodies against the uveitogenic protein. In contrast, TTPΔARE mice produced higher levels of the anti-inflammatory cytokine IL-10, and had higher frequencies of regulatory T-cells, which, moreover, displayed a moderately higher per-cell regulatory ability. Heterozygous mice developed EAU and associated immunological responses at levels intermediate between homozygous TTPΔARE mice and WT controls. TTPΔARE mice were able, however, to develop EAU following adoptive transfer of activated WT T-cells specific to IRBP peptide 651-670, and naïve T-cells from TTPΔARE mice could be activated by antibodies to CD3/CD28. Importantly, TTPΔARE antigen presenting cells were significantly less efficient compared to WT in priming naïve T cells, suggesting that this feature plays a major role in the dampened immune responses of the TTPΔARE mice. Our observations demonstrate that elevated systemic levels of TTP can inhibit the pathogenic processes involved in EAU, and suggest the possible use of TTP-based treatments in humans with uveitis and other autoimmune conditions.


Subject(s)
Autoimmune Diseases/metabolism , Nervous System Autoimmune Disease, Experimental/metabolism , Tristetraprolin/metabolism , Uveitis/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Nervous System Autoimmune Disease, Experimental/immunology , Nervous System Autoimmune Disease, Experimental/pathology , Tristetraprolin/immunology , Uveitis/immunology , Uveitis/pathology
20.
Front Cell Dev Biol ; 8: 606751, 2020.
Article in English | MEDLINE | ID: mdl-33614621

ABSTRACT

Autoimmune uveitis is a major cause of blindness in humans. Activation of retina-specific autoreactive T cells by commensal microbiota has been shown to trigger uveitis in mice. Although a culprit microbe and/or its immunogenic antigen remains to be identified, studies from inducible and spontaneous mouse models suggest the potential of microbiota-modulating therapies for treating ocular autoimmune disease. In this review, we summarize recent findings on the contribution of microbiota to T cell-driven, tissue-specific autoimmunity, with an emphasis on autoimmune uveitis, and analyze microbiota-altering interventions, including antibiotics, probiotics, and microbiota-derived metabolites (e.g., short-chain fatty acids), which have been shown to be effective in other autoimmune diseases. We also discuss the need to explore more translational animal models as well as to integrate various datasets (microbiomic, transcriptomic, proteomic, metabolomic, and other cellular measurements) to gain a better understanding of how microbiota can directly or indirectly modulate the immune system and contribute to the onset of disease. It is hoped that deeper understanding of these interactions may lead to more effective treatment interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...