Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagn Pathol ; 18(1): 124, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964347

ABSTRACT

AIMS: The association of human herpesvirus 6 (HHV-6) species with pancreatic cancer is controversially discussed. The aim of this study was to further investigate the postulated association and to identify the basis of HHV-6 DNA positivity reported for pancreatic cancer tissue. METHODS: All samples of patients with pancreatic cancer (cancer and surrounding tissue) were analyzed for presence of HHV-6 DNA by PCR and then selected cases by immunohistochemistry. RESULTS: Sixty eight per cent (68% = 52/77) of all patients were HHV-6 DNA positive in any of the samples, 49% (38/77) were positive in tumor tissue. Specimens of just one patient were HHV-6A DNA positive, all other patients were positive for HHV-6B. Immunohistochemical analysis of HHV-6 DNA positive samples did not reveal any specific HHV-6B protein positive tumor cell. In contrast, supposed immune cells presented intra- and peritumorally expressed HHV-6B-protein. The cause of presence of these cells in the tumor stroma is unknown, as of yet. CONCLUSIONS: HHV-6 DNA-positivity of pancreatic cancer tissue described by us and others is probably not due to the infection of pancreatic cells by HHV-6, but rather due to the migration of HHV-6 positive immune cells into the pancreas. Based on our data, we suppose that there is no direct evidence for HHV-6 as a causative agent of pancreatic cancer, but further in-depth studies (including investigation of immune status of patients) are necessary to make definitive conclusions.


Subject(s)
Adenocarcinoma , Carcinoma, Pancreatic Ductal , Herpesvirus 6, Human , Pancreatic Neoplasms , Roseolovirus Infections , Humans , Herpesvirus 6, Human/genetics , Roseolovirus Infections/diagnosis , Roseolovirus Infections/genetics , DNA, Viral/genetics , Pancreatic Neoplasms
2.
Nat Commun ; 8(1): 813, 2017 10 09.
Article in English | MEDLINE | ID: mdl-28993618

ABSTRACT

Gas-filled hollow-core photonic crystal fibre is being used to generate ever wider supercontinuum spectra, in particular via dispersive wave emission in the deep and vacuum ultraviolet, with a multitude of applications. Dispersive waves are the result of nonlinear transfer of energy from a self-compressed soliton, a process that relies crucially on phase-matching. It was recently predicted that, in the strong-field regime, the additional transient anomalous dispersion introduced by gas ionization would allow phase-matched dispersive wave generation in the mid-infrared-something that is forbidden in the absence of free electrons. Here we report the experimental observation of such mid-infrared dispersive waves, embedded in a 4.7-octave-wide supercontinuum that uniquely reaches simultaneously to the vacuum ultraviolet, with up to 1.7 W of total average power.Dispersive wave emission in gas-filled hollow-core photonic crystal fibres has been possible in the visible and ultraviolet via the optical Kerr effect. Here, Köttig et al. demonstrate dispersive waves generated by an additional transient anomalous dispersion from gas ionization in the mid-infrared.

3.
Phys Rev Lett ; 115(3): 033901, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26230794

ABSTRACT

We propose a scheme for the emission of few-cycle dispersive waves in the midinfrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, subcycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the midinfrared. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and midinfrared wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle midinfrared radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...