Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotoxicology ; 5(3): 296-311, 2011 Sep.
Article in English | MEDLINE | ID: mdl-20849212

ABSTRACT

The cellular uptake of engineered nanoparticles (ENPs) is known to involve active transport mechanisms, yet the biological molecules involved are poorly understood. We demonstrate that the uptake of amorphous silica ENPs by macrophage cells, and the secretion of proinflammatory cytokines, is strongly inhibited by silencing expression of scavenger receptor A (SR-A). Conversely, ENP uptake is augmented by introducing SR-A expression into human cells that are normally non-phagocytic. Confocal microscopy analyses show that the majority of single or small clusters of silica ENPs co-localize with SR-A and are internalized through a pathway characteristic of clathrin-dependent endocytosis. In contrast, larger silica ENP agglomerates (>500 nm) are poorly co-localized with the receptor, suggesting that the physical agglomeration state of an ENP influences its cellular trafficking. As SR-A is expressed in macrophages throughout the reticulo-endothelial system, this pathway is likely an important determinant of the biological response to ENPs.


Subject(s)
Nanoparticles/chemistry , Scavenger Receptors, Class A/metabolism , Silicon Dioxide/chemistry , Animals , Clathrin , Endocytosis , Gene Silencing , Humans , Mice , Scavenger Receptors, Class A/genetics
2.
Toxicol Appl Pharmacol ; 236(2): 210-20, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19371605

ABSTRACT

The cellular interactions and pathways of engineered submicro- and nano-scale particles dictate the cellular response and ultimately determine the level of toxicity or biocompatibility of the particles. Positive surface charge can increase particle internalization, and in some cases can also increase particle toxicity, but the underlying mechanisms are largely unknown. Here we identify the cellular interaction and pathway of positively charged submicrometer synthetic amorphous silica particles, which are used extensively in a wide range of industrial applications, and are explored for drug delivery and medical imaging and sensing. Using time lapse fluorescence imaging in living cells and other quantitative imaging approaches, it is found that heparan sulfate proteoglycans play a critical role in the attachment and internalization of the particles in alveolar type II epithelial cell line (C10), a potential target cell type bearing apical microvilli. Specifically, the transmembrane heparan sulfate proteoglycan, syndecan-1, is found to mediate the initial interactions of the particles at the cell surface, their coupling with actin filaments across the cell membrane, and their subsequent internalization via macropinocytosis. The observed interaction of syndecan molecules with the particle prior to their engagement with actin filaments suggests that the particles initiate their own internalization by facilitating the clustering of the molecules, which is required for the actin coupling and subsequent internalization of syndecan. Our observations identify a new role for syndecan-1 in mediating the cellular interactions and fate of positively charged submicrometer amorphous silica particles in the alveolar type II epithelial cell, a target cell for inhaled particles.


Subject(s)
Actins/physiology , Epithelial Cells/drug effects , Pulmonary Alveoli/cytology , Silicon Dioxide/toxicity , Syndecan-1/metabolism , Animals , Cell Line , Chondroitin Sulfates/metabolism , Epithelial Cells/cytology , Heparan Sulfate Proteoglycans/metabolism , Mice , Particulate Matter/chemistry , Particulate Matter/toxicity , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...