Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Lancet Respir Med ; 9(8): 885-896, 2021 08.
Article in English | MEDLINE | ID: mdl-33961805

ABSTRACT

BACKGROUND: Infection is a key component of bronchiectasis pathophysiology. Characterisation of the microbiome offers a higher degree of sensitivity and resolution than does traditional culture methods. We aimed to evaluate the role of the microbiome in determining the risk of exacerbation and long-term outcomes, including all-cause mortality, in bronchiectasis. METHODS: We did a prospective observational cohort study of patients with bronchiectasis from eastern Scotland. Patients were enrolled from Sept 11, 2012, to Dec 21, 2015, and followed until Jan 8, 2019, for long-term outcomes. Patients were included if they were aged 18 years or older, and had a high-resolution CT-confirmed diagnosis of bronchiectasis and clinical symptoms consistent with the disease. Sputum samples were obtained when patients were clinically stable. Repeat sputum samples were taken at stable and exacerbation visits during follow-up. The V3-V4 region of the bacterial 16S rRNA gene was sequenced using the Illumina MiSeq platform. The dominant bacterial genus in each sample was assigned on the basis of a previously published method. Microbiome characteristics were analysed for their association with measures of clinical disease severity and long-term outcomes using PERMANOVA, random forest, and survival analyses. FINDINGS: Sequencing data were obtained from the sputum samples of 281 patients with bronchiectasis who were included in the stable baseline cohort. 49 (17%) of 281 patients provided more than one sample when clinically stable and were included in the longitudinal analysis. 64 (23%) patients provided both stable and exacerbation samples. In both stable bronchiectasis and during exacerbations, a sputum microbiome dominated by Proteobacteria and Firmicutes was observed. Individual patients' microbiome profiles were relatively stable over time, during exacerbations and at disease stability. Lower microbiome diversity, measured using the Shannon-Wiener diversity index, was associated with more severe bronchiectasis defined by the bronchiectasis severity index, lower FEV1, and more severe symptoms. Random forest analysis of baseline samples identified Pseudomonas, Enterobacteriaceae, and Stenotrophomonas as being associated with severe bronchiectasis (bronchiectasis severity index ≥9) and greater lung inflammation and Pseudomonas and Enterobacteriaceae with more frequent exacerbations. Patients in whom Pseudomonas was dominant (n=35) were at increased risk of all-cause mortality (hazard ratio 3·12, 95% CI 1·33-7·36; p=0·0091) and had more frequent exacerbations (incident rate ratio 1·69, 95% CI 1·07-2·67; p=0·024) during follow-up compared with patients with other dominant genera (n=246). INTERPRETATION: A reduction in microbiome diversity, particularly one associated with dominance of Pseudomonas, is associated with greater disease severity, higher frequency and severity of exacerbations, and higher risk of mortality. The microbiome might therefore identify subgroups of patients at increased risk of poor outcomes who could benefit from precision treatment strategies. Further research is required to identify the mechanisms of reduced microbiome diversity and to establish whether the microbiome can be therapeutically targeted. FUNDING: British Lung Foundation and European Respiratory Society EMBARC2 consortium.


Subject(s)
Bronchiectasis/microbiology , Microbiota , Sputum/microbiology , Aged , Bronchiectasis/mortality , Disease Progression , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Quality of Life , Respiratory Function Tests , Severity of Illness Index
2.
J Allergy Clin Immunol ; 147(1): 158-167, 2021 01.
Article in English | MEDLINE | ID: mdl-32353489

ABSTRACT

BACKGROUND: The sputum microbiome has a potential role in disease phenotyping and risk stratification in chronic obstructive pulmonary disease (COPD), but few large longitudinal cohort studies exist. OBJECTIVE: Our aim was to investigate the COPD sputum microbiome and its association with inflammatory phenotypes and mortality. METHODS: 16S ribosomal RNA gene sequencing was performed on sputum from 253 clinically stable COPD patients (4-year median follow-up). Samples were classified as Proteobacteria or Firmicutes (phylum level) and Haemophilus or Streptococcus (genus level) dominant. Alpha diversity was measured by using Shannon-Wiener diversity and Berger-Parker dominance indices. Survival was modeled by using Cox proportional hazards regression. A subset of 78 patients had label-free liquid chromatography with tandem mass spectrometry performed, with partial least square discriminant analysis integrating clinical, microbiome, and proteomics data. RESULTS: Proteobacteria dominance and lower diversity was associated with more severe COPD according to the Global Initiative for Chronic Obstructive Lung Disease classification system (P = .0015), more frequent exacerbations (P = .0042), blood eosinophil level less than or equal to 100 cells/µL (P < .0001), and lower FEV1 (P = .026). Blood eosinophil counts showed a positive relationship with percent of Firmicutes and Streptococcus and a negative association with percent Proteobacteria and Haemophilus. Proteobacteria dominance was associated with increased mortality compared with Firmicutes-dominated or balanced microbiome profiles (hazard ratio = 2.58; 95% CI = 1.43-4.66; P = .0017 and hazard ratio = 7.47; 95% CI = 1.02-54.86; P = .048, respectively). Integrated omics analysis showed significant associations between Proteobacteria dominance and the neutrophil activation pathway in sputum. CONCLUSION: The sputum microbiome is associated with clinical and inflammatory phenotypes in COPD. Reduced microbiome diversity, associated with Proteobacteria (predominantly Haemophilus) dominance, is associated with neutrophil-associated protein profiles and an increased risk of mortality.


Subject(s)
Microbiota , Proteobacteria/classification , Pulmonary Disease, Chronic Obstructive , Sputum/microbiology , Aged , Disease-Free Survival , Female , Humans , Inflammation , Longitudinal Studies , Male , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/mortality , Survival Rate
3.
Clin Pharmacol Ther ; 108(6): 1195-1202, 2020 12.
Article in English | MEDLINE | ID: mdl-32496628

ABSTRACT

Angioedema occurring in the head and neck region is a rare and sometimes life-threatening adverse reaction to angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Few studies have investigated the association of common variants with this extreme reaction, but none have explored the combined influence of rare variants yet. Adjudicated cases of ACEI-induced angioedema (ACEI-AE) or ARB-induced angioedema (ARB-AE) and controls were recruited at five different centers. Sequencing of 1,066 samples (408 ACEI-AE, ARB-AE, and 658 controls) was performed using exome-enriched sequence data. A common variant of the F5 gene that causes an increase in blood clotting (rs6025, p.Arg506Gln, also called factor V Leiden), was significantly associated with both ACEI-AE and ARB-AE (odds ratio: 2.85, 95% confidence interval (CI), 1.89-4.25). A burden test analysis of five rare missense variants in F5 was also found to be associated with ACEI-AE or ARB-AE, P = 2.09 × 10-3 . A combined gene risk score of these variants, and the common variants rs6025 and rs6020, showed that individuals carrying at least one variant had 2.21 (95% CI, 1.49-3.27, P = 6.30 × 10-9 ) times the odds of having ACEI-AE or ARB-AE. The increased risk due to the common Leiden allele was confirmed in a genome-wide association study from the United States. A high risk of angioedema was also observed for the rs6020 variant that is the main coagulation defect-causing variant in black African and Asian populations. We found that deleterious missense variants in F5 are associated with an increased risk of ACEI-AE or ARB-AE.


Subject(s)
Angioedema/chemically induced , Angioedema/genetics , Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , DNA Mutational Analysis , Exome Sequencing , Factor V/genetics , Mutation, Missense , Aged , Angioedema/ethnology , Case-Control Studies , Europe/epidemiology , Exome , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Mutation Rate , Risk Assessment , Risk Factors , United States/epidemiology
4.
Med. oral patol. oral cir. bucal (Internet) ; 23(2): e144-e150, mar. 2018. ilus, tab
Article in English | IBECS | ID: ibc-171394

ABSTRACT

Background: Oral white sponge nevus (WSN) is a rare autosomal dominant benign condition, characterized by asymptomatic spongy white plaques. Mutations in Keratin 4 (KRT4) and 13 (KRT13) have been shown to cause WSN. Familial cases are uncommon due to irregular penetrance. Thus, the aim of the study was: a) to demonstrate the clinical and histopathological features of a three-generation Turkish family with oral WSN b) to determine whether KRT4 or KRT13 gene mutation was the molecular basis of WSN. Material and Methods: Out of twenty members of the family ten were available for assessment. Venous blood samples from six affected and five unaffected members and 48 healthy controls were obtained for genetic mutational analysis. Polymerase chain reaction was used to amplify all exons within KRT4 and KRT13 genes. These products were sequenced and the data was examined for mutations and polymorphisms. Results: Varying presentation and severity of clinical features were observed. Analysis of the KRT13 gene revealed the sequence variant Y118D as the disease-causing mutation. One patient revealed several previously unreported polymorphisms including a novel mutation in exon 1 of the KRT13 gene and a heterozygous deletion in exon 1 of KRT4. This deletion in the KRT4 gene was found to be a common polymorphism reflecting a high allele frequency of 31.25% in the Turkish population. Conclusions: Oral WSN may manifest variable clinical features. The novel mutation found in the KRT13 gene is believed to add evidence for a mutational hotspot in the mucosal keratins. Molecular genetic analysis is required to establish correct diagnosis and appropriate genetic consultation (AU)


No disponible


Subject(s)
Humans , Male , Adult , Nevus/classification , Nevus/pathology , Leukoplakia/diagnosis , Leukoplakia/pathology , Mouth Mucosa/pathology , Biopsy , Mutagenesis/genetics
5.
Thorax ; 73(6): 510-518, 2018 06.
Article in English | MEDLINE | ID: mdl-29101284

ABSTRACT

BACKGROUND: In cystic fibrosis and bronchiectasis, genetic mannose binding lectin (MBL) deficiency is associated with increased exacerbations and earlier mortality; associations in COPD are less clear. Preclinical data suggest MBL interferes with phagocytosis of Haemophilus influenzae, a key COPD pathogen. We investigated whether MBL deficiency impacted on clinical outcomes or microbiota composition in COPD. METHODS: Patients with COPD (n=1796) underwent MBL genotyping; linkage to health records identified exacerbations, lung function decline and mortality. A nested subcohort of 141 patients, followed for up to 6 months, was studied to test if MBL deficiency was associated with altered sputum microbiota, through 16S rRNA PCR and sequencing, or airway inflammation during stable and exacerbated COPD. FINDINGS: Patients with MBL deficiency with COPD were significantly less likely to have severe exacerbations (incidence rate ratio (IRR) 0.66, 95% CI 0.48 to 0.90, p=0.009), or to have moderate or severe exacerbations (IRR 0.77, 95% CI 0.60 to 0.99, p=0.047). MBL deficiency did not affect rate of FEV1 decline or mortality. In the subcohort, patients with MBL deficiency had a more diverse lung microbiota (p=0.008), and were less likely to be colonised with Haemophilus spp. There were lower levels of airway inflammation in patients with MBL deficiency. INTERPRETATION: Patients with MBL deficient genotype with COPD have a lower risk of exacerbations and a more diverse lung microbiota. This is the first study to identify a genetic association with the lung microbiota in COPD.


Subject(s)
Mannose-Binding Lectin/deficiency , Metabolism, Inborn Errors/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/microbiology , Adult , Aged , Disease Progression , Female , Genetic Association Studies , Genotype , Humans , Male , Mannose-Binding Lectin/genetics , Microbiota , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests , Sputum/microbiology
6.
J Allergy Clin Immunol ; 141(1): 117-127, 2018 01.
Article in English | MEDLINE | ID: mdl-28506850

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) have been observed in the airway in patients with chronic obstructive pulmonary disease (COPD), but their clinical and pathophysiologic implications have not been defined. OBJECTIVE: We sought to determine whether NETs are associated with disease severity in patients with COPD and how they are associated with microbiota composition and airway neutrophil function. METHODS: NET protein complexes (DNA-elastase and histone-elastase complexes), cell-free DNA, and neutrophil biomarkers were quantified in soluble sputum and serum from patients with COPD during periods of disease stability and during exacerbations and compared with clinical measures of disease severity and the sputum microbiome. Peripheral blood and airway neutrophil function were evaluated by means of flow cytometry ex vivo and experimentally after stimulation of NET formation. RESULTS: Sputum NET complexes were associated with the severity of COPD evaluated by using the composite Global Initiative for Obstructive Lung Disease scale (P < .0001). This relationship was due to modest correlations between NET complexes and FEV1, symptoms evaluated by using the COPD assessment test, and higher levels of NET complexes in patients with frequent exacerbations (P = .002). Microbiota composition was heterogeneous, but there was a correlation between NET complexes and both microbiota diversity (P = .009) and dominance of Haemophilus species operational taxonomic units (P = .01). Ex vivo airway neutrophil phagocytosis of bacteria was reduced in patients with increased sputum NET complexes. Consistent results were observed regardless of the method of quantifying sputum NETs. Failure of phagocytosis could be induced experimentally by incubating healthy control neutrophils with soluble sputum from patients with COPD. CONCLUSION: NET formation is increased in patients with severe COPD and associated with more frequent exacerbations and a loss of microbiota diversity.


Subject(s)
Extracellular Traps , Microbiota/immunology , Pulmonary Disease, Chronic Obstructive , Severity of Illness Index , Sputum/immunology , Aged , Aged, 80 and over , Extracellular Traps/immunology , Extracellular Traps/microbiology , Humans , Middle Aged , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/microbiology , Pulmonary Disease, Chronic Obstructive/pathology
7.
Exp Dermatol ; 24(4): 285-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25644735

ABSTRACT

Acral peeling skin syndrome (APSS, MIM #609796) is a rare autosomal recessive disorder characterized by superficial exfoliation and blistering of the volar and dorsal aspects of hands and feet. The level of separation is at the junction of the stratum granulosum and stratum corneum. APSS is caused by mutations in the TGM5 gene encoding transglutaminase-5, which is important for structural integrity of the outermost epidermal layers. The majority of patients originate from Europe and carry a p.(Gly113Cys) mutation in TGM5. In this study, we report both European and non-European families carrying other mutations in the TGM5 gene. In 5 patients, we found 3 novel mutations: c.1001+2_1001+3del, c.1171G>A and c.1498C>T. To confirm their pathogenicity, we performed functional analyses with a transglutaminase activity assay, determined alternative splicing by reverse-transcribed PCR analysis and used databases and in silico prediction tools.


Subject(s)
Mutation , Skin Diseases/congenital , Transglutaminases/genetics , Alternative Splicing , Amino Acid Sequence , Amino Acid Substitution , Cells, Cultured , Child , Child, Preschool , DNA Mutational Analysis , Europe , Female , HEK293 Cells , Humans , INDEL Mutation , Infant , Kuwait , Male , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Netherlands/ethnology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Skin Diseases/enzymology , Skin Diseases/genetics , Transfection , Transglutaminases/metabolism
8.
PLoS One ; 8(6): e67306, 2013.
Article in English | MEDLINE | ID: mdl-23825651

ABSTRACT

Fixed, paraffin-embedded (FPE) tissues are a potentially rich resource for studying the role of NOTCH1 in cancer and other pathologies, but tests that reliably detect activated NOTCH1 (NICD1) in FPE samples have been lacking. Here, we bridge this gap by developing an immunohistochemical (IHC) stain that detects a neoepitope created by the proteolytic cleavage event that activates NOTCH1. Following validation using xenografted cancers and normal tissues with known patterns of NOTCH1 activation, we applied this test to tumors linked to dysregulated Notch signaling by mutational studies. As expected, frequent NICD1 staining was observed in T lymphoblastic leukemia/lymphoma, a tumor in which activating NOTCH1 mutations are common. However, when IHC was used to gauge NOTCH1 activation in other human cancers, several unexpected findings emerged. Among B cell tumors, NICD1 staining was much more frequent in chronic lymphocytic leukemia than would be predicted based on the frequency of NOTCH1 mutations, while mantle cell lymphoma and diffuse large B cell lymphoma showed no evidence of NOTCH1 activation. NICD1 was also detected in 38% of peripheral T cell lymphomas. Of interest, NICD1 staining in chronic lymphocytic leukemia cells and in angioimmunoblastic lymphoma was consistently more pronounced in lymph nodes than in surrounding soft tissues, implicating factors in the nodal microenvironment in NOTCH1 activation in these diseases. Among carcinomas, diffuse strong NICD1 staining was observed in 3.8% of cases of triple negative breast cancer (3 of 78 tumors), but was absent from 151 non-small cell lung carcinomas and 147 ovarian carcinomas. Frequent staining of normal endothelium was also observed; in line with this observation, strong NICD1 staining was also seen in 77% of angiosarcomas. These findings complement insights from genomic sequencing studies and suggest that IHC staining is a valuable experimental tool that may be useful in selection of patients for clinical trials.


Subject(s)
Receptor, Notch1/metabolism , Animals , Cell Line, Tumor , Heterografts , Humans , Immunohistochemistry , Mice , Mutation , Receptor, Notch1/genetics
9.
Hum Mutat ; 29(3): 351-60, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18033728

ABSTRACT

We describe a revised and expanded database on human intermediate filament proteins, a major component of the eukaryotic cytoskeleton. The family of 70 intermediate filament genes (including those encoding keratins, desmins, and lamins) is now known to be associated with a wide range of diverse diseases, at least 72 distinct human pathologies, including skin blistering, muscular dystrophy, cardiomyopathy, premature aging syndromes, neurodegenerative disorders, and cataract. To date, the database catalogs 1,274 manually-curated pathogenic sequence variants and 170 allelic variants in intermediate filament genes from over 459 peer-reviewed research articles. Unrelated cases were collected from all of the six sequence homology groups and the sequence variations were described at cDNA and protein levels with links to the related diseases and reference articles. The mutations and polymorphisms are presented in parallel with data on protein structure, gene, and chromosomal location and basic information on associated diseases. Detailed statistics relating to the variants records in the database are displayed by homology group, mutation type, affected domain, associated diseases, and nucleic and amino acid substitutions. Multiple sequence alignment algorithms can be run from queries to determine DNA or protein sequence conservation. Literature sources can be interrogated within the database and external links are provided to public databases. The database is freely and publicly accessible online at www.interfil.org (last accessed 13 September 2007). Users can query the database by various keywords and the search results can be downloaded. It is anticipated that the Human Intermediate Filament Database (HIFD) will provide a useful resource to study human genome variations for basic scientists, clinicians, and students alike.


Subject(s)
Databases, Genetic , Intermediate Filament Proteins/genetics , Multigene Family , Algorithms , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA, Complementary/genetics , Humans , Molecular Sequence Data , Mutation , Polymorphism, Genetic , Sequence Alignment/statistics & numerical data , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid
10.
J Invest Dermatol ; 126(8): 1770-5, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16810297

ABSTRACT

Mutations in the filament aggregating protein (filaggrin) gene have recently been identified as the cause of the common genetic skin disorder ichthyosis vulgaris (IV), the most prevalent inherited disorder of keratinization. The main characteristics of IV are fine-scale on the arms and legs, palmar hyperlinearity, and keratosis pilaris. Here, we have studied six Irish families with IV for mutations in filaggrin. We have identified a new mutation, 3702delG, in addition to further instances of the reported mutations R501X and 2282del4, which are common in people of European origin. A case of a 2282del4 homozygote was also identified. Mutation 3702delG terminates protein translation in filaggrin repeat domain 3, whereas both recurrent mutations occur in repeat 1. These mutations are semidominant: heterozygotes have an intermediate phenotype most readily identified by palmar hyperlinearity and in some cases fine-scale and/or keratosis pilaris, whereas homozygotes or compound heterozygotes generally have more marked ichthyosis. Interestingly, the phenotypes of individuals homozygous for R501X, 2282del4, or compound heterozygous for R501X and 3702delG, were comparable, suggesting that mutations located centrally in the filaggrin repeats are also pathogenic.


Subject(s)
Dermatitis, Atopic/genetics , Ichthyosis Vulgaris/genetics , Intermediate Filament Proteins/genetics , Point Mutation , Dermatitis, Atopic/epidemiology , Family Health , Female , Filaggrin Proteins , Genetic Linkage , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Ichthyosis Vulgaris/epidemiology , Ireland/epidemiology , Male , Pedigree , Phenotype , Prevalence
11.
Am J Hum Genet ; 77(6): 909-17, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16380904

ABSTRACT

Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis.


Subject(s)
Epidermis/enzymology , Homozygote , Mutation, Missense , Skin Diseases/enzymology , Skin Diseases/etiology , Transglutaminases/genetics , Binding Sites , Catalytic Domain , Cell Line , Chromosome Mapping , Consanguinity , Cross Reactions , DNA Mutational Analysis , Epidermis/metabolism , Epidermis/pathology , Epidermis/ultrastructure , Female , Genes, Recessive , Genetic Linkage , Genetic Markers , Genetic Vectors , Haplotypes , Humans , Male , Microsatellite Repeats , Models, Molecular , Molecular Sequence Data , Pedigree , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Analysis, DNA , Skin Diseases/genetics , Skin Diseases/metabolism , Skin Diseases/pathology , Syndrome , Transglutaminases/chemistry , Transglutaminases/metabolism
12.
J Investig Dermatol Symp Proc ; 10(1): 31-6, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16250207

ABSTRACT

Keratins are the intermediate filament proteins specifically expressed by epithelial cells. The Human Genome Project has uncovered a total of 54 functional keratin genes that are differentially expressed in specific epithelial structures of the body, many of which involve the epidermis and its appendages. Pachyonychia congenita (PC) is a group of autosomal dominant genodermatoses affecting the nails, thick skin and other ectodermal structures, according to specific sub-type. The major clinical variants of the disorder (PC-1 and PC-2) are known to be caused by dominant-negative mutations in one of four differentiation-specific keratins: K6a, K6b, K16, and K17. A total of 20 human keratin genes are currently linked to single-gene disorders or are predisposing factors in complex traits. In addition, a further six intermediate filament genes have been linked to other non-epithelial genetic disorders. We have established a comprehensive mutation database that catalogs all published independent occurrences of intermediate filament mutations (http://www.interfil.org), with details of phenotypes, published papers, patient support groups and other information. Here, we review the genotype-phenotype trends emerging from the spectrum of mutations in these genes and apply these correlations to make predictions about PC phenotypes based on the site of mutation and keratin pair involved.


Subject(s)
Databases, Genetic , Ectodermal Dysplasia/genetics , Keratins/genetics , Keratoderma, Palmoplantar/genetics , Nails, Malformed/genetics , Age of Onset , Darier Disease/congenital , Darier Disease/genetics , Epidermolysis Bullosa Simplex/genetics , Female , Genotype , Humans , Keratoderma, Palmoplantar/congenital , Male , Mutation , Nails, Malformed/congenital , Phenotype , Polymorphism, Genetic
13.
J Investig Dermatol Symp Proc ; 10(1): 21-30, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16250206

ABSTRACT

In 1994, the molecular basis of pachyonychia congenita (PC) was elucidated. Four keratin genes are associated with the major subtypes of PC: K6a or K16 defects cause PC-1; and mutations in K6b or K17 cause PC-2. Mutations in keratins, the epithelial-specific intermediate filament proteins, result in aberrant cytoskeletal networks which present clinically as a variety of epithelial fragility phenotypes. To date, mutations in 20 keratin genes are associated with human disorders. Here, we review the genetic basis of PC and report 30 new PC mutations. Of these, 25 mutations were found in PC-1 families and five mutations were identified in PC-2 kindreds. All mutations identified were heterozygous amino acid substitutions or small in-frame deletion mutations with the exception of an unusual mutation in a sporadic case of PC-1. The latter carried a 117 bp duplication resulting in a 39 amino acid insertion in the 2B domain of K6a. Also of note was mutation L388P in K17, which is the first genetic defect identified in the helix termination motif of this protein. Understanding the genetic basis of these disorders allows better counseling for patients and paves the way for therapy development.


Subject(s)
Ectodermal Dysplasia/genetics , Keratins/genetics , Keratoderma, Palmoplantar/genetics , Nails, Malformed/genetics , Base Sequence , DNA/genetics , DNA Mutational Analysis , Darier Disease/congenital , Darier Disease/genetics , Female , Humans , Keratoderma, Palmoplantar/congenital , Male , Mutation , Nails, Malformed/congenital , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...