Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1146690, 2023.
Article in English | MEDLINE | ID: mdl-37143648

ABSTRACT

Background: Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods: Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results: Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions: Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.


Subject(s)
Cognitive Dysfunction , Listeria monocytogenes , Listeriosis , Mice , Male , Animals , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Cognitive Dysfunction/etiology
2.
Immun Ageing ; 19(1): 25, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35614490

ABSTRACT

BACKGROUND: Understanding mechanisms of pathologic neuroinflammation is essential for improving outcomes after central nervous system infections. Brain tissue-resident memory T cells (bTRM) are recruited during central nervous system infection and promote pathogen control as well as noxious inflammation. Our prior studies in young mice showed optimal recruitment of CD8+ bTRM during neuroinvasive Listeria monocytogenes (Lm) infection required miR-155, and was significantly inhibited by anti-miR-155 oligonucleotides. Since Lm is an important pathogen in the elderly, we hypothesized anti-miR-155 would also inhibit accumulation of CD8+ bTRM in aged mice infected with Lm. METHODS: Young (2 mo) and aged (> 18 mo) male C57BL/6 mice were infected intra-peritoneally with wild-type Lm, or avirulent Lm mutants lacking the genes required for intracellular motility (ΔactA) or phagosomal escape (Δhly), then were given antibiotics. Brain leukocytes and their intracellular cytokine production were quantified by flow cytometry >28d post-infection (p.i.). The role of miR-155 was tested by injecting mice with anti-miR-155 or control oligonucleotides along with antibiotics. RESULTS: Aged mice had significantly more homeostatic CD8+ bTRM than did young mice, which did not increase after infection with wild-type Lm despite 50% mortality, whereas young mice suffered no mortality after a larger inoculum. For direct comparison of post-infectious neuroinflammation after the same inoculum, young and aged mice were infected with 107 CFU ΔactA Lm. This mutant caused no mortality and significantly increased CD8+ bTRM 28d p.i. in both groups, whereas bone marrow-derived myeloid cells, particularly neutrophils, increased only in aged mice. Notably, anti-miR-155 reduced accumulation of brain myeloid cells in aged mice after infection, whereas CD8+ bTRM were unaffected. CONCLUSIONS: Systemic infection with Lm ΔactA is a novel model for studying infection-induced brain inflammation in aged mice without excessive mortality. CD8+ bTRM increase in both young and aged mice after infection, whereas only in aged mice bone marrow-derived myeloid cells increase long-term. In aged mice, anti-miR-155 inhibits brain accumulation of myeloid cells, but not CD8+ bTRM. These results suggest young and aged mice differ in manifestations and mechanisms of infection-induced neuroinflammation and give insight for developing therapies to ameliorate brain inflammation following severe infection in the elderly.

3.
Front Aging Neurosci ; 13: 644733, 2021.
Article in English | MEDLINE | ID: mdl-34054502

ABSTRACT

Sepsis is a life-threatening condition, the incidence of which is significantly increased in elderly patients. One of the long-lasting effects of sepsis is cognitive impairment defined as a new deficit or exacerbation of preexisting deficits in global cognition or executive function. Normal brain function is dependent on moment-to-moment adjustment of cerebral blood flow to match the increased demands of active brain regions. This homeostatic mechanism, termed neurovascular coupling (NVC, also known as functional hyperemia), is critically dependent on the production of vasodilator NO by microvascular endothelial cells in response to mediators released from activated astrocytes. The goal of this study was to test the hypothesis that sepsis in aging leads to impairment of NVC responses early after treatment and that this neurovascular dysfunction associates with impairments in cognitive performance and vascular endothelial dysfunction. To test this hypothesis, we used a commonly studied bacterial pathogen, Listeria monocytogenes, to induce sepsis in experimental animals (males, 24 months of age) and subjected experimental animals to a standard clinical protocol of 3 doses of ampicillin i.p. and 14 days of amoxicillin added to the drinking water. NVC responses, endothelial function and cognitive performance were measured in septic and age-matched control groups within 14 days after the final antibiotic treatment. Our data demonstrate that sepsis in aging significantly impairs NVC responses measured in somatosensory cortex during whisker stimulation, significantly impairs endothelial function in isolated and pressure cannulated aorta rings in response to acetylcholine stimulation. No significant impairment of cognitive function in post-sepsis aged animals has been observed when measured using the PhenoTyper homecage based system. Our findings suggest that sepsis-associated endothelial dysfunction and impairment of NVC responses may contribute to long-term cognitive deficits in older sepsis survivors.

4.
J Neuroinflammation ; 17(1): 259, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32878636

ABSTRACT

BACKGROUND: Brain inflammation is a key cause of cognitive decline after central nervous system (CNS) infections. A thorough understanding of immune responses to CNS infection is essential for developing anti-inflammatory interventions that improve outcomes. Tissue-resident memory T cells (TRM) are non-recirculating memory T cells that provide surveillance of previously infected tissues. However, in addition to protecting the brain against reinfection, brain TRM can contribute to post-infectious neuroinflammation. We hypothesized that accumulation of CD8+ TRM in the brain could be reduced by inhibiting microRNA (miR)-155, a microRNA that influences development of cytotoxic CD8+ T lymphocytes during infection. METHODS: C57BL/6J mice were infected by intraperitoneal injection with a lethal inoculum of Listeria monocytogenes (Lm) then treated with antibiotics. Flow cytometry was used to quantify specific populations of brain leukocytes 28-29 days (d) post-infection (p.i.). To test the degree to which miR-155 altered leukocyte influxes into the brain, infected mice were injected with a miR-155 inhibitor or locked nucleic acid (LNA) scramble control 2d, 4d, 6d, and 8d p.i. along with antibiotic treatment. Bacterial loads in spleen and liver and body weights were measured up to 7d p.i. Brain leukocytes were analyzed 14d and 28d p.i. Confirmatory studies were performed in mutated mice lacking miR-155 (miR-155-/-) RESULTS: Lm infection significantly increased the numbers of brain CD3+CD8+ lymphocytes at 28d p.i. These cells were extravascular, and displayed markers characteristic of TRM, with the predominant phenotype of CD44+CD62L-CD69+CX3CR1-. Further analysis showed that > 75% of brain TRM also expressed CD49a, PD-1, Ly6C, CD103, and CD127. Mice injected with miR-155 inhibitor lost less weight through 7d p.i. than did control mice, whereas bacterial loads in brain, liver, and spleen were not different from controls. By 28d p.i., the numbers of brain CD8+ TRM cells were significantly decreased in mice treated with the inhibitor compared with controls. Similarly, miR-155-/- mice showed significantly reduced numbers of brain CD8+ TRM cells by 28d p.i. CONCLUSIONS: Brain CD8+ TRM populations are established during neuroinvasive Lm infection. Accumulation of brain CD8+ TRM cells is reduced by blocking miR-155 and in miR-155-/- mice, indicating that this molecule has a critical role in development of these specialized cells. Administering anti-miR-155 during infection could provide a novel avenue for reducing post-infectious neuroinflammation.


Subject(s)
Brain/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Listeriosis/metabolism , MicroRNAs/metabolism , Ampicillin/therapeutic use , Animals , Anti-Bacterial Agents/therapeutic use , Brain/immunology , Brain/microbiology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/microbiology , Cytokines/metabolism , Listeriosis/drug therapy , Listeriosis/immunology , Mice
5.
Front Immunol ; 9: 2751, 2018.
Article in English | MEDLINE | ID: mdl-30538705

ABSTRACT

MicroRNA (miR) miR-155 modulates microglial activation and polarization, but its role in activation of microglia during bacterial brain infection is unclear. We studied miR-155 expression in brains of C57BL/6 (B6.WT) mice infected i.p. with the neuro-invasive bacterial pathogen Listeria monocytogenes (L. monocytogenes). Infected mice were treated with ampicillin starting 2 days (d) post-infection (p.i.) and analyzed 3d, 7d, and 14d p.i. Virulent L. monocytogenes strains EGD and 10403s upregulated miR-155 in whole brain 7 d p.i. whereas infection with avirulent, non-neurotropic Δhly or ΔactA L. monocytogenes mutants did not. Similarly, infection with virulent but not mutated bacteria upregulated IFN-γ mRNA in the brain at 7 d p.i. Upregulation of miR-155 in microglia was confirmed by qPCR of flow cytometry-sorted CD45intCD11bpos brain cells. Subsequently, brain leukocyte influxes and gene expression in sorted microglia were compared in L. monocytogenes-infected B6.WT and B6.Cg-Mir155tm1.1Rsky/J (B6.miR-155-/-) mice. Brain influxes of Ly-6Chigh monocytes and upregulation of IFN-related genes in microglia were similar to B6.WT mice at 3 d p.i. In contrast, by d 7 p.i. expressions of microglial IFN-related genes, including markers of M1 polarization, were significantly lower in B6.miR-155-/- mice and by 14 d p.i., influxes of activated T-lymphocytes were markedly reduced. Notably, CD45highCD11bpos brain cells from B6.miR-155-/- mice isolated at 7 d p.i. expressed 2-fold fewer IFN-γ transcripts than did cells from B6.WT mice suggesting reduced IFN-γ stimulation contributed to dampened gene expression in B6.miR-155-/- microglia. Lastly, in vitro stimulation of 7 d p.i. brain cells with heat-killed L. monocytogenes induced greater production of TNF in B6.miR-155-/- microglia than in B6.WT microglia. Thus, miR-155 affects brain inflammation by multiple mechanisms during neuroinvasive L. monocytogenes infection. Peripheral miR-155 promotes brain inflammation through its required role in optimal development of IFN-γ-secreting lymphocytes that enter the brain and activate microglia. Microglial miR-155 promotes M1 polarization, and also inhibits inflammatory responses to stimulation by heat-killed L. monocytogenes, perhaps by targeting Tab2.


Subject(s)
Interferon-gamma/immunology , Listeria monocytogenes/immunology , MicroRNAs/immunology , Microglia/immunology , Up-Regulation/immunology , Animals , Cell Communication/immunology , Encephalitis/genetics , Encephalitis/immunology , Female , Gene Expression/genetics , Gene Expression/immunology , Interferon-gamma/genetics , Listeriosis/genetics , Listeriosis/immunology , Listeriosis/microbiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Microglia/microbiology , Monocytes/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , T-Lymphocytes/immunology , Up-Regulation/genetics
6.
J Org Chem ; 80(15): 7530-5, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26153720

ABSTRACT

Amine photobase generators (PBGs) are uncommon yet useful compounds. Rarer still are examples of PBGs that are active at visible wavelengths. We report the synthesis and characterization of new photolabile amine protecting groups that are active under visible light. The new chromophore, benzothiophene imino-phenylacetonitrile (BTIPA), was synthesized in four steps without use of chromatography and found to release any one of several amines upon exposure to 405 nm light. The chromophore was also demonstrated to be useful as a Merrifield synthesis protecting group. Experimental evidence suggests a sequential, two stage photolysis mechanism which leads to a nonlinear response to dose.

SELECTION OF CITATIONS
SEARCH DETAIL
...