Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 151(8): 1324-33, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17572699

ABSTRACT

BACKGROUND AND PURPOSE: Chronic morphine administration produces tolerance in vivo and attenuation of mu opioid receptor (MOR)-mediated G-protein activation measured in vitro, but the relationship between these adaptations is not clear. The present study examined MOR-mediated G-protein activation in the CNS of mice with different levels of morphine tolerance. EXPERIMENTAL APPROACH: Mice were implanted with morphine pellets, with or without supplemental morphine injections, to induce differing levels of tolerance as determined by a range of MOR-mediated behaviours. MOR function was measured using agonist-stimulated [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) and receptor binding throughout the CNS. KEY RESULTS: Morphine pellet implantation produced 6-12-fold tolerance in antinociceptive assays, hypothermia and Straub tail, as measured by the ratio of morphine ED(50) values between morphine-treated and control groups. Pellet implantation plus supplemental injections produced 25-50-fold tolerance in these tests. In morphine pellet-implanted mice, MOR-stimulated [(35)S]GTPgammaS binding was significantly reduced only in the nucleus tractus solitarius (NTS) and spinal cord dorsal horn in tissue sections from morphine pellet-implanted mice. In contrast, MOR-stimulated [(35)S]GTPgammaS binding was significantly decreased in most regions examined in morphine pellet+morphine injected mice, including nucleus accumbens, caudate-putamen, periaqueductal gray, parabrachial nucleus, NTS and spinal cord. CONCLUSIONS AND IMPLICATIONS: Tolerance and the regional pattern of apparent MOR desensitization were influenced positively by the level of morphine exposure. These results indicate that desensitization of MOR-mediated G-protein activity is more regionally widespread upon induction of high levels of tolerance, suggesting that this response contributes more to high than low levels of tolerance to CNS-mediated effects of morphine.


Subject(s)
Analgesics, Opioid/pharmacology , Drug Tolerance , GTP-Binding Proteins/metabolism , Morphine/pharmacology , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/administration & dosage , Animals , Binding Sites , Central Nervous System , Dose-Response Relationship, Drug , Guanosine 5'-O-(3-Thiotriphosphate) , Hypothermia/chemically induced , Male , Mice , Morphine/administration & dosage , Pain Measurement , Posterior Horn Cells , Solitary Nucleus , Tail/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...