Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Metabolites ; 14(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535304

ABSTRACT

Many biogeochemical processes are modulated by dissolved organic matter (DOM), but the drivers influencing the chemodiversity of DOM compounds in Amazonian soils are poorly understood. It has also been theorized whether deforestation controls the decline of DOM. In this study, we collected soil samples from thirty sites across different regions of Brazil's Legal Amazon, and we investigated the trade-offs among soil physical-chemical properties and DOM chemodiversity. We employed optical spectroscopy, Fourier transform ion cyclotron resonance, and multivariate analysis. Our results indicated that, despite variations in land use and soil physical-chemical properties, factors such as the deforested site, geometric mean diameter, weighted average diameter, and soil organic carbon were the main influencers of DOM chemodiversity variation. These findings highlight the importance of considering DOM chemodiversity as closely related to land use and its potential use in developing deforestation models for predicting soil quality decline in Brazil's Legal Amazon.

2.
Sci Rep ; 13(1): 20547, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996545

ABSTRACT

Mandacaru is a cactus with great socioeconomic potential, but lack of information about its cultivation hinders its domestication. Here, we aimed to evaluate the acclimatization and vegetative development of mandacaru under different substrates and irrigation levels. For this, seeds inoculated in vitro were grown for 120 days, being transplanted to pots containing four types of substrate (S1-caatinga soil + gravel; S2-washed sand + organic matter + soil + charcoal; S3-washed sand + cattle manure + soil + sand; S4-commercial organic substrate). Pots were irrigated with 100% of the field capacity (FC) once-a-week, or with 50% FC twice-a-week, and kept in a greenhouse for six months. The experimental design was completely randomized, in a 4 × 2 factorial scheme, with six replications. Plant height and diameter, axial and radial growth rate, fresh and dry mass of stem and root, water content, and photosynthetic pigments were determined. Growth was affected mainly by the substrate, with S4 resulting in higher growth and pigment content, while S1 was impaired and S2 and S3 resulted in intermediate growth. The use of S4 and 100% FC once per week was the best condition for mandacaru.


Subject(s)
Cactaceae , Animals , Cattle , Cactaceae/chemistry , Sand , Brazil , Soil/chemistry , Acclimatization
SELECTION OF CITATIONS
SEARCH DETAIL
...