Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1830(9): 4365-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23220699

ABSTRACT

BACKGROUND: There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated. METHODS: Here, films of N,N'-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments. RESULTS: We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations. CONCLUSIONS: Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field. GENERAL SIGNIFICANCE: This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/statistics & numerical data , Electronics, Medical/instrumentation , Electronics, Medical/methods , Imides/chemistry , Perylene/analogs & derivatives , Semiconductors , Transistors, Electronic , Animals , CHO Cells , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Cricetinae , Materials Testing/methods , Metals/chemistry , Nitriles/chemistry , Oxides/chemistry , Perylene/chemistry , Water/chemistry
2.
Eur Biophys J ; 41(2): 249-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22237602

ABSTRACT

Impedance spectroscopy (IS) is a powerful technique for analysis of the complex electrical impedance of a large variety of biological systems, because it is sensitive both to surface phenomena and to changes of bulk properties. A simple and convenient method of analysis of cell properties by IS is described. An interdigitated electrodes configuration was used for the measurements; human epithelial cells were grown on the device to investigate the complex dielectric response as a function of frequency, in order to test the suitability of the device for use as a label-free biosensor. To test the ability of the device to detect channels in the cell membrane, the effect of drugs known to affect membrane integrity was also investigated. The frequency response of the admittance (i.e. the reciprocal of the impedance) can be well fitted by a model based on very simple assumptions about the cells coating the device surface and the current flow; from the calculations, membrane-specific capacitance and information about cell adhesion can be inferred. These preliminary efforts have shown that our configuration could lead to a label-free non-invasive technique for biosensing and cellular behavior monitoring which might prove useful in investigation of the basic properties of cells and the effect of drugs by estimation of some fundamental properties and modification of the electrical characteristics of the device.


Subject(s)
Biosensing Techniques/methods , Dielectric Spectroscopy/methods , Systems Integration , Biosensing Techniques/instrumentation , Cell Membrane/drug effects , Cell Membrane/metabolism , Electrodes , HeLa Cells , Humans , Nystatin/pharmacology , Octoxynol/pharmacology
3.
J Nanosci Nanotechnol ; 9(11): 6307-14, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19908527

ABSTRACT

A novel electrical bistable hybrid nanocomposite based on doped Polyaniline nanofibers with 1-Dodecanethiol-protected Gold nanoparticle (PAni.AuDT), 3-4 nm in size, as the conductive component and polystyrene as polymer matrix was prepared. The structural morphology of the composite and the dispersion of nanoparticles inside it were evaluated using Transmission Electron Microscopy (TEM). The thermal stability and the ratio Polyaniline/Gold nanoparticles in the composite were determined by using thermogravimetric analysis. The electrical bistability of the PAni.AuDT-PS composite, the influence of the dispersion of the PAni.AuDT conductive network and the basic operation mechanism, have been assessed by measuring the electrical response of planar device architectures, also as a function of the environmental temperature (in the range 200 K < T < 360 K). The basic operation mechanism of the hybrid compound has been then correlated to the combined action of the thermally-induced scattering of charge carriers and the thermal contraction of the hosting polymeric matrix. Moreover, the right compromise between these two effects in terms of the most efficient bistability has been studied, founding the concentration of the conductive component which optimizes the device on-off ratio (I(on)/ I(off)).

SELECTION OF CITATIONS
SEARCH DETAIL
...