Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Rehabil Sci Pract ; 13: 27536351241227261, 2024.
Article in English | MEDLINE | ID: mdl-38298551

ABSTRACT

Introduction: Post-COVID-19 syndrome, or Long Covid (LC) refers to symptoms persisting 12 weeks after the COVID-19 infection. LC comprises a wide range of dysautonomia symptoms, including fatigue, breathlessness, palpitations, dizziness, pain and brain fog. This study tested the feasibility and estimated the efficacy, of a Heart Rate Variability Biofeedback (HRV-B) programme via a standardised slow diaphragmatic breathing technique in individuals with LC. Methods: LC patients underwent a 4-week HRV-B intervention for 10 minutes twice daily for 4 weeks using the Polar H10 ECG (Electrocardiogram) chest strap and Elite HRV phone application. Outcome measures C19-YRSm (Yorkshire Rehabilitation Scale modified), Composite Autonomic Symptom Score (COMPASS-31), WHO Disability Assessment Schedule (WHODAS), EQ5D-5L (EuroQol 5 Dimensions) and Root Mean Square of Successive Differences between heartbeats (RMSSD) using a Fitbit device were recorded before and after the intervention. The study was pre-registered at clinicaltrials.gov NCT05228665. Results: A total of 13 participants (54% female, 46% male) completed the study with high levels of independent use of technology, data completeness and intervention adherence. There was a statistically significant improvement in C19YRS-m (P = .001), COMPASS-31 (P = .007), RMSSD (P = .047), WHODAS (P = .02) and EQ5D Global Health Score (P = .009). Qualitative feedback suggested participants could use it independently, were satisfied with the intervention and reported beneficial effects from the intervention. Conclusion: HRV-B using diaphragmatic breathing is a feasible intervention for LC. The small sample size limits generalisability. HRV-B in LC warrants further exploration in a larger randomised controlled study.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4618-4621, 2022 07.
Article in English | MEDLINE | ID: mdl-36085958

ABSTRACT

A button sensor antenna (BSA) for wireless medical body area networks (WMBAN) is presented, which works through the IEEE 802.11b/g/n standard. Due to strong interaction between the sensor antenna and the body, a new robust system is designed with a small footprint that can serve on- and off-body healthcare applications. The measured and simulated results are matched well. The design offers a wide range of omnidirectional radiation patterns in free space, with a reflection coefficient (S11) of -29.30 (-30.97) dB in the lower (upper) bands. S11 reaches up to -23.07 (-27.07) dB and -30.76 (-31.12) dB on the body chest and arm, respectively. The Specific Absorption Rate (SAR) values are below the regulatory limitations for both 1-gram (1.6 W/Kg) and 10-gram tissues (2.0 W/Kg). Experimental tests of the read range validate the results of a maximum coverage range of 40 meters. Clinical Relevance- WMBAN technology allows for continuous monitoring and analysis of patient health data to improve the quality of healthcare services.


Subject(s)
Wireless Technology , Humans
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3455-3458, 2022 07.
Article in English | MEDLINE | ID: mdl-36086253

ABSTRACT

A flexible meander line monopole antenna (MMA) is presented in this paper. The antenna can be worn for on-and off-body applications. The overall dimension of the MMA is 37 mm x 50 mm x 2.37 mms, The MMA was manufactured and measured, and the results matched with simulation results. The MMA design shows a bandwidth of up to 1282.4 (450.5) MHz and provides gains of 3.03 (4.85) dBi in two operating bands, respectively, showing omnidirectional radiation patterns in free space. While worn on the chest or arm, bandwidths as high as 688.9 (500.9) MHz and 1261.7 (524.2) MHz, and the gains of 3.80 (4.67) dBi and 3.00 (4.55) dBi were observed. The experimental measurements of the read range confirmed. Clinical Relevance- Wireless Medical Body Area Network (WMBAN) technology allows for continuous monitoring and analysis of patient health data to improve the quality of healthcare services.


Subject(s)
Health Facilities , Wireless Technology , Computer Simulation , Delivery of Health Care , Equipment Design , Humans
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 780-783, 2020 07.
Article in English | MEDLINE | ID: mdl-33018102

ABSTRACT

Parkinson's disease is diagnosed based on expert clinical observation of movements. One important clinical feature is decrement, whereby the range of finger motion decreases over the course of the observation. This decrement has been assumed to be linear but has not been examined closely.We previously developed a method to extract a time series representation of a finger-tapping clinical test from 137 smart- phone video recordings. Here, we show how the signal can be processed to visualize archetypal progression of decrement. We use k-means with features derived from dynamic time warping to compare similarity of time series. To generate the archetypal time series corresponding to each cluster, we apply both a simple arithmetic mean, and dynamic time warping barycenter averaging to the time series belonging to each cluster.Visual inspection of the cluster-average time series showed two main trends. These corresponded well with participants with no bradykinesia and participants with severe bradykinesia. The visualizations support the concept that decrement tends to present as a linear decrease in range of motion over time.Clinical relevance- Our work visually presents the archetypal types of bradykinesia amplitude decrement, as seen in the Parkinson's finger-tapping test. We found two main patterns, one corresponding to no bradykinesia, and the other showing linear decrement over time.


Subject(s)
Hypokinesia , Parkinson Disease , Cluster Analysis , Humans , Movement , Range of Motion, Articular
5.
Br J Pain ; 14(3): 161-170, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32922777

ABSTRACT

BACKGROUND: Brainwave entrainment (BWE) using rhythmic visual or auditory stimulation has many potential clinical applications, including the management of chronic pain, where there is a pressing need for novel, safe and effective treatments. The aim of this study was to gain qualitative feedback on the acceptability and usability of a novel BWE smartphone application, to ensure it meets the needs and wishes of end users. METHODS: Fifteen participants with chronic pain used the application at home for 4 weeks. Semi-structured telephone interviews were then carried out. A template analysis approach was used to interpret the findings, with an initial coding template structured around the constructs of a theoretical framework for assessing acceptability of healthcare interventions. Structured data analysis generated a final modified coding structure, capturing themes generated across participants' accounts. RESULTS: The four main themes were 'approach to trying out the app: affective attitude and ethicality', 'perceived effectiveness', 'opportunity costs and burden' and 'intervention coherence and self-efficacy'. All participants were willing to engage with the technology and welcomed it as an alternative approach to medications. Participants appreciated the simplicity of design and the ability to choose between visual or auditory stimulation. All the participants felt confident in using the application. CONCLUSION: The findings demonstrate preliminary support for the acceptability and usability of the BWE application. This is the first qualitative study of BWE to systematically assess these issues.

6.
Healthc Technol Lett ; 6(1): 19-26, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30881695

ABSTRACT

Estimation of respiratory rate (RR) from photoplethysmography (PPG) signals has important applications in the healthcare sector, from assisting doctors onwards to monitoring patients in their own homes. The problem is still very challenging, particularly during the motion for large segments of data, where results from different methods often do not agree. The authors aim to propose a new technique which performs motion reduction from PPG signals with the help of simultaneous acceleration signals where the PPG and accelerometer sensors need to be embedded in the same sensor unit. This method also reconstructs motion corrupted PPG signals in the Hilbert domain. An auto-regressive (AR) based technique has been used to estimate the RR from reconstructed PPGs. The proposed method has provided promising results for the estimation of RRs and their variations from PPG signals corrupted with motion artefact. The proposed platform is able to contribute to continuous in-hospital and home-based monitoring of patients using PPG signals under various conditions such as rest and motion states.

SELECTION OF CITATIONS
SEARCH DETAIL
...