Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 419: 126396, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34171671

ABSTRACT

Pearl-farming is the second most important source of income in French Polynesia. However, tropical lagoons are fragile ecosystems with regard to anthropogenic pressures like plastic pollution, which threaten marine life and the pearl oyster-related economy. Here, we investigated the spatial distribution of microplastics (MP) and concentrations in surface water (SW), water column (WC) and cultivated pearl oyster (PO) from three pearl-farming atolls with low population and tourism. Microplastics were categorized by their size class, shape, colour and polymer type identified using FTIR spectroscopy. Widespread MP contamination was observed in every study site (SW, 0.2-8.4 MP m-3; WC, 14.0-716.2 MP m-3; PO, 2.1-125.0 MP g-1 dry weight), with high contamination in the WC highlighting the need to study the vertical distribution of MP, especially as this compartment where PO are reared. A large presence of small (< 200 µm) and fragment-shaped (> 70%) MP suggests that they result from the breakdown of larger plastic debris. The most abundant polymer type was polyethylene in SW (34-39%), WC (24-32%), while in PO, polypropylene (14-20%) and polyethylene were more evenly distributed (9-21%). The most common MP identified as black-grey polyethylene and polypropylene matches the polymer and colour of ropes and collectors questioning a pearl-farming origin.


Subject(s)
Pinctada , Water Pollutants, Chemical , Agriculture , Animals , Ecosystem , Environmental Monitoring , Microplastics , Plastics , Water Pollutants, Chemical/analysis
2.
Water Res ; 179: 115890, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32402865

ABSTRACT

Pearl-farming leads to significant plastic pollution in French Polynesia (FP) as the end of life of most farming gear is currently poorly managed. Plastic debris released into the aquatic environment accumulates, with potentially detrimental effects on the lagoon ecosystem and pearl oyster Pinctada margaritifera, a species of ecological, commercial and social value. Here, we tested the effects of leachates from new (N) and aged (A) plastic pearl-farming gear (spat collector and synthetic rope) obtained after 24 h and 120 h incubation, on the embryo-larval development of the pearl oyster using an in-vitro assay. Embryos were exposed for 24 h and 48 h to a negative control (0) and the leachate from 0.1, 1, 10 and 100 g of plastic. L-1. After 24 h exposure to leachate at 100 g.L-1, effects were observed on embryo development (-38% to -60% of formed larvae) and mortality (+72% to +82%). Chemical analyses of plastic gear indicated the presence of 26 compounds, consisting of organic contaminants (PAHs) and additives (mainly phthalates). Screening of leachates demonstrated that these compounds leach into the surrounding seawater with an additional detection of pesticides. Higher levels of phthalates were measured in leachates obtained from new (6.7-9.1 µg.L-1) than from aged (0.4-0.5 µg.L-1) plastics, which could be part of the explanation of the clear difference in toxicity observed after 48 h exposure at lower concentrations (0.1-10 g.L-1), associated with mortality ranging from 26 to 86% and 17-28%, respectively. Overall, this study suggests that plastic gear used in the pearl-farming industry releases significant amounts of hazardous chemicals over their lifetime, which may affect pearl oyster development that call for in-situ exploration.


Subject(s)
Pinctada , Agriculture , Animals , Ecosystem , Plastics , Polynesia
3.
Environ Pollut ; 250: 807-819, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31039474

ABSTRACT

Nowadays, environmental pollution by microplastics (<5 mm; MP) is a major issue. MP are contaminating marine organisms consumed by humans. This work studied MP contamination in two bivalve species of commercial interest: blue mussel (Mytilus edulis) and common cockle (Cerastoderma edule) sampled on the Channel coastlines (France). In parallel, 13 plastic additives and 27 hydrophobic organic compounds (HOC) were quantified in bivalves flesh using SBSE-TD-GS-MS/MS to explore a possible relationship between their concentrations and MP contamination levels. MP were extracted using a 10% potassium hydroxide digestion method then identified by µ-Raman spectroscopy. The proportion of contaminated bivalves by MP ranged from 34 to 58%. Blue mussels and common cockles exhibited 0.76 ±â€¯0.40 and 2.46 ±â€¯1.16 MP/individual and between 0.15 ±â€¯0.06 and 0.74 ±â€¯0.35 MP/g of tissue wet weight. Some HOC and plastic additives were detected in bivalves. However, no significant Pearson or Spearman correlation was found between MP loads and plastic additives or HOC concentrations in bivalve tissues for the two species.


Subject(s)
Cardiidae/chemistry , Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/chemistry , Food Contamination/analysis , France , Humans , Mytilus edulis/chemistry , Seafood/analysis
4.
Environ Pollut ; 242(Pt A): 614-625, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30014939

ABSTRACT

Microplastics (<5 mm) exhibit intrinsic features such as density, hydrophobic surface, or high surface/volume ratio, that are known to promote microbial colonization and biofilm formation in marine ecosystems. Yet, a relatively low number of studies have investigated the nature of microplastic associated bacterial communities in coastal ecosystems and the potential factors influencing their composition and structure. Here, we characterized microplastics collected in the Bay of Brest by manual sorting followed by Raman spectroscopy and studied their associated bacterial assemblages using 16S amplicon high-throughput sequencing. Our methodology allowed discriminating polymer type (polyethylene, polypropylene and polystyrene) within small size ranges (0.3-1 vs. 1-2 vs. 2-5 mm) of microplastics collected. Data showed high species richness and diversity on microplastics compared to surrounding seawater samples encompassing both free living and particle attached bacteria. Even though a high proportion of operational taxonomic units (OTU; 94 ±â€¯4%) was shared among all plastic polymers, polystyrene fragments exhibited distinct bacterial assemblages as compared to polyethylene and polypropylene samples. No effect of microplastic size was revealed regardless of polymer type, site and date of collection. The Vibrio genus was commonly detected in the microplastic fraction and specific PCR were performed to determine the presence of potentially pathogenic Vibrio strains (namely V. aestuarianus and the V. splendidus polyphyletic group). V. splendidus related species harboring putative oyster pathogens were detected on most microplastic pools (77%) emphasizing the need of further research to understand the role of microplastics on pathogen population transport and ultimate disease emergence.


Subject(s)
Bacteria , Environmental Monitoring , Plastics/analysis , Water Pollutants, Chemical/analysis , Bays/chemistry , Ecosystem , Polyethylene/analysis , Polymers/analysis , Polypropylenes/analysis , Polystyrenes/analysis , Seawater/chemistry , Seawater/microbiology , Water Microbiology
5.
Anal Bioanal Chem ; 410(25): 6663-6676, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30051208

ABSTRACT

Plastics are found to be major debris composing marine litter; microplastics (MP, < 5 mm) are found in all marine compartments. The amount of MPs tends to increase with decreasing size leading to a potential misidentification when only visual identification is performed. These last years, pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) has been used to get information on the composition of polymers with some applications on MP identification. The purpose of this work was to optimize and then validate a Py-GC/MS method, determine limit of detection (LOD) for eight common polymers, and apply this method on environmental MP. Optimization on multiple GC parameters was carried out using polyethylene (PE) and polystyrene (PS) microspheres. The optimized Py-GC/MS method require a pyrolysis temperature of 700 °C, a split ratio of 5 and 300 °C as injector temperature. Performance assessment was accomplished by performing repeatability and intermediate precision tests and calculating limit of detection (LOD) for common polymers. LODs were all below 1 µg. For performance assessment, identification remains accurate despite a decrease in signal over time. A comparison between identifications performed with Raman micro spectroscopy and with Py-GC/MS was assessed. Finally, the optimized method was applied to environmental samples, including plastics isolated from sea water surface, beach sediments, and organisms collected in the marine environment. The present method is complementary to µ-Raman spectroscopy as Py-GC/MS identified pigment containing particles as plastic. Moreover, some fibers and all particles from sediment and sea surface were identified as plastic. Graphical abstract ᅟ.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Water Pollutants, Chemical/metabolism , Gas Chromatography-Mass Spectrometry , Limit of Detection
6.
Environ Pollut ; 216: 724-737, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27372385

ABSTRACT

The effects of polystyrene microbeads (micro-PS; mix of 2 and 6 µm; final concentration: 32 µg L(-1)) alone or in combination with fluoranthene (30 µg L(-1)) on marine mussels Mytilus spp. were investigated after 7 days of exposure and 7 days of depuration under controlled laboratory conditions. Overall, fluoranthene was mostly associated to algae Chaetoceros muelleri (partition coefficient Log Kp = 4.8) used as a food source for mussels during the experiment. When micro-PS were added in the system, a fraction of FLU transferred from the algae to the microbeads as suggested by the higher partition coefficient of micro-PS (Log Kp = 6.6), which confirmed a high affinity of fluoranthene for polystyrene microparticles. However, this did not lead to a modification of fluoranthene bioaccumulation in exposed individuals, suggesting that micro-PS had a minor role in transferring fluoranthene to mussels tissues in comparison with waterborne and foodborne exposures. After depuration, a higher fluoranthene concentration was detected in mussels exposed to micro-PS and fluoranthene, as compared to mussels exposed to fluoranthene alone. This may be related to direct effect of micro-PS on detoxification mechanisms, as suggested by a down regulation of a P-glycoprotein involved in pollutant excretion, but other factors such as an impairment of the filtration activity or presence of remaining beads in the gut cannot be excluded. Micro-PS alone led to an increase in hemocyte mortality and triggered substantial modulation of cellular oxidative balance: increase in reactive oxygen species production in hemocytes and enhancement of anti-oxidant and glutathione-related enzymes in mussel tissues. Highest histopathological damages and levels of anti-oxidant markers were observed in mussels exposed to micro-PS together with fluoranthene. Overall these results suggest that under the experimental conditions of our study micro-PS led to direct toxic effects at tissue, cellular and molecular levels, and modulated fluoranthene kinetics and toxicity in marine mussels.


Subject(s)
Fluorenes/toxicity , Mytilus/drug effects , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Fluorenes/metabolism , Glutathione/metabolism , Hemocytes/drug effects , Hemocytes/metabolism , Microspheres , Mytilus/metabolism , Polystyrenes/metabolism , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
7.
Environ Pollut ; 215: 223-233, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27209243

ABSTRACT

Pollution of the oceans by microplastics (<5 mm) represents a major environmental problem. To date, a limited number of studies have investigated the level of contamination of marine organisms collected in situ. For extraction and characterization of microplastics in biological samples, the crucial step is the identification of solvent(s) or chemical(s) that efficiently dissolve organic matter without degrading plastic polymers for their identification in a time and cost effective way. Most published papers, as well as OSPAR recommendations for the development of a common monitoring protocol for plastic particles in fish and shellfish at the European level, use protocols containing nitric acid to digest the biological tissues, despite reports of polyamide degradation with this chemical. In the present study, six existing approaches were tested and their effects were compared on up to 15 different plastic polymers, as well as their efficiency in digesting biological matrices. Plastic integrity was evaluated through microscopic inspection, weighing, pyrolysis coupled with gas chromatography and mass spectrometry, and Raman spectrometry before and after digestion. Tissues from mussels, crabs and fish were digested before being filtered on glass fibre filters. Digestion efficiency was evaluated through microscopical inspection of the filters and determination of the relative removal of organic matter content after digestion. Five out of the six tested protocols led to significant degradation of plastic particles and/or insufficient tissue digestion. The protocol using a KOH 10% solution and incubation at 60 °C during a 24 h period led to an efficient digestion of biological tissues with no significant degradation on all tested polymers, except for cellulose acetate. This protocol appeared to be the best compromise for extraction and later identification of microplastics in biological samples and should be implemented in further monitoring studies to ensure relevance and comparison of environmental and seafood product quality studies.


Subject(s)
Aquatic Organisms/metabolism , Environmental Monitoring/methods , Plastics/analysis , Plastics/metabolism , Seafood/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Animals , Benchmarking
8.
J Invertebr Pathol ; 123: 38-48, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24815818

ABSTRACT

Nine dominant bacterial isolates were obtained from different batches of Crassostrea gigas spat experiencing high mortality rates in a French experimental hatchery/nursery in 2007. Using phenotypic analysis combined with multilocus sequence analysis, the isolates were shown to be genetically close to the Vibrio tubiashii type strain. Based on (1) analyses of the recA gene sequences; (2) the results of DNA-DNA hybridization assays between 07/118 T2 (LMG 27884=CECT 8426), which is a representative strain, and the V. tubiashii type strain (69%); and (3) phenotypic traits, the bacteria were classified in a group close to American V. tubiashii strain. Its virulence (70% of mortalities) and the toxicity of the extracellular products of 07/118 T2 was demonstrated (41% of mortalities). Moreover, a QPCR diagnostic tool targeting the gyrB gene was developed to investigate the epidemiological significance of V. tubiashii in French oyster mortality outbreaks recorded by the national surveillance network. Of the 21 batches originating from hatcheries, only two were positive, whereas V. tubiashii DNA could not be detected in any of the batches of moribund animals collected in field/outdoor facilities. These results demonstrate the existence of a group of virulent V. tubiashii in France that episodically infect C. gigas.


Subject(s)
Crassostrea/microbiology , Vibrio/genetics , Vibrio/isolation & purification , Animals , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Vibrio/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...