Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6803, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884524

ABSTRACT

Over the last 70 years, extreme heat has been increasing at a disproportionate rate in Western Europe, compared to climate model simulations. This mismatch is not well understood. Here, we show that a substantial fraction (0.8 °C [0.2°-1.4 °C] of 3.4 °C per global warming degree) of the heat extremes trend is induced by atmospheric circulation changes, through more frequent southerly flows over Western Europe. In the 170 available simulations from 32 different models that we analyzed, including 3 large model ensembles, none have a circulation-induced heat trend as large as observed. This can be due to underestimated circulation response to external forcing, or to a systematic underestimation of low-frequency variability, or both. The former implies that future projections are too conservative, the latter that we are left with deep uncertainty regarding the pace of future summer heat in Europe. This calls for caution when interpreting climate projections of heat extremes over Western Europe, in view of adaptation to heat waves.

2.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34149115

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

3.
Nat Commun ; 9(1): 855, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472556

ABSTRACT

The original version of this Article omitted a reference to previous work in 'Mann, M.E., Cane, M.A., Zebiak, S.E., Clement, A., Volcanic and Solar Forcing of the Tropical Pacific Over the Past 1000 Years, J. Climate 18, 447-456 (2005)'. This has been added as reference 62 at the end of the fourth sentence of the fourth paragraph of the Introduction: 'Early studies using simple coupled ocean-atmosphere models26 proposed that following volcano-induced surface cooling, upwelling in the eastern equatorial Pacific acting on a reduced vertical temperature contrast between the ocean surface and interior leads to anomalous warming in this region, thereby favouring El Niño development the following year12, 27, 62.' This has been corrected in the PDF and HTML versions of the Article.

4.
5.
Nat Commun ; 8(1): 778, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974676

ABSTRACT

Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.

6.
Nature ; 455(7212): 523-7, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18818656

ABSTRACT

Bridging the traditional gap between the spatio-temporal scales of weather and climate is a significant challenge facing the atmospheric community. In particular, progress in both medium-range and seasonal-to-interannual climate prediction relies on our understanding of recurrent weather patterns and the identification of specific causes responsible for their favoured occurrence, persistence or transition. Within this framework, I here present evidence that the main climate intra-seasonal oscillation in the tropics-the Madden-Julian Oscillation (MJO)-controls part of the distribution and sequences of the four daily weather regimes defined over the North Atlantic-European region in winter. North Atlantic Oscillation (NAO) regimes are the most affected, allowing for medium-range predictability of their phase far exceeding the limit of around one week that is usually quoted. The tropical-extratropical lagged relationship is asymmetrical. Positive NAO events mostly respond to a mid-latitude low-frequency wave train initiated by the MJO in the western-central tropical Pacific and propagating eastwards. Precursors for negative NAO events are found in the eastern tropical Pacific-western Atlantic, leading to changes along the North Atlantic storm track. Wave-breaking diagnostics tend to support the MJO preconditioning and the role of transient eddies in setting the phase of the NAO. I present a simple statistical model to quantitatively assess the potential predictability of the daily NAO index or the sign of the NAO regimes when they occur. Forecasts are successful in approximately 70 per cent of the cases based on the knowledge of the previous approximately 12-day MJO phase used as a predictor. This promising skill could be of importance considering the tight link between weather regimes and both mean conditions and the chances of extreme events occurring over Europe. These findings are useful for further stressing the need to better simulate and forecast the tropical coupled ocean-atmosphere dynamics, which is a source of medium-to-long range predictability and is the Achilles' heel of the current seamless prediction suites.

SELECTION OF CITATIONS
SEARCH DETAIL
...