Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 25(7): 1231-1244, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898157

ABSTRACT

To understand the role of T cells in the pathogenesis of ulcerative colitis (UC), we analyzed colonic T cells isolated from patients with UC and controls. Here we identified colonic CD4+ and CD8+ T lymphocyte subsets with gene expression profiles resembling stem-like progenitors, previously reported in several mouse models of autoimmune disease. Stem-like T cells were increased in inflamed areas compared to non-inflamed regions from the same patients. Furthermore, TCR sequence analysis indicated stem-like T cells were clonally related to proinflammatory T cells, suggesting their involvement in sustaining effectors that drive inflammation. Using an adoptive transfer colitis model in mice, we demonstrated that CD4+ T cells deficient in either BCL-6 or TCF1, transcription factors that promote T cell stemness, had decreased colon T cells and diminished pathogenicity. Our results establish a strong association between stem-like T cell populations and UC pathogenesis, highlighting the potential of targeting this population to improve clinical outcomes.


Subject(s)
Colitis, Ulcerative , Hepatocyte Nuclear Factor 1-alpha , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Humans , Animals , Mice , Hepatocyte Nuclear Factor 1-alpha/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Proto-Oncogene Proteins c-bcl-6/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Stem Cells/immunology , Stem Cells/metabolism , Female , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Mice, Knockout , Colon/immunology , Colon/pathology , Male , Mice, Inbred C57BL , Adoptive Transfer , Disease Models, Animal , Adult , Middle Aged
2.
Med ; 4(12): 875-897.e8, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-37865091

ABSTRACT

BACKGROUND: Patients with severe uncontrolled asthma represent a distinct endotype with persistent airway inflammation and remodeling that is refractory to corticosteroid treatment. CD4+ TH2 cells play a central role in orchestrating asthma pathogenesis, and biologic therapies targeting their cytokine pathways have had promising outcomes. However, not all patients respond well to such treatment, and their effects are not always durable nor reverse airway remodeling. This observation raises the possibility that other CD4+ T cell subsets and their effector molecules may drive airway inflammation and remodeling. METHODS: We performed single-cell transcriptome analysis of >50,000 airway CD4+ T cells isolated from bronchoalveolar lavage samples from 30 patients with mild and severe asthma. FINDINGS: We observed striking heterogeneity in the nature of CD4+ T cells present in asthmatics' airways, with tissue-resident memory T (TRM) cells making a dominant contribution. Notably, in severe asthmatics, a subset of CD4+ TRM cells (CD103-expressing) was significantly increased, comprising nearly 65% of all CD4+ T cells in the airways of male patients with severe asthma when compared to mild asthma (13%). This subset was enriched for transcripts linked to T cell receptor activation (HLA-DRB1, HLA-DPA1) and cytotoxicity (GZMB, GZMA) and, following stimulation, expressed high levels of transcripts encoding for pro-inflammatory non-TH2 cytokines (CCL3, CCL4, CCL5, TNF, LIGHT) that could fuel persistent airway inflammation and remodeling. CONCLUSIONS: Our findings indicate the need to look beyond the traditional T2 model of severe asthma to better understand the heterogeneity of this disease. FUNDING: This research was funded by the NIH.


Subject(s)
Asthma , Memory T Cells , Humans , Male , Asthma/metabolism , Cytokines/metabolism , CD4-Positive T-Lymphocytes/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...