Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Metabolites ; 12(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36005626

ABSTRACT

Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans ß-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by ß-cells, and exposition to LDL can impair these phenomena. ß-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on ß-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that ß-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive ß-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from ß-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.

2.
J Cell Biochem ; 120(3): 4158-4171, 2019 03.
Article in English | MEDLINE | ID: mdl-30320914

ABSTRACT

Endoplasmic reticulum stress is a cellular phenomenon that has been associated with metabolic disorders, contributing to the development of obesity, fatty liver disease, and dyslipidemias. Under metabolic overload conditions, in cells with a high protein-secretory activity, such as hepatocytes and Langerhans ß cells, the unfolded protein response (UPR) is critical in to maintain protein homeostasis (proteostasis). UPR integrated by a tripartite signaling system, through activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase (PERK), and inositol-requiring enzyme 1, regulates gene transcription and translation to resolve stress and conserve proteostasis. In the current study, we demonstrated in hepatocytes under metabolic overload by saturated palmitic and stearic fatty acids, through activation of PERK signaling and CCAAT-enhancer-binding protein homologous protein (CHOP) transcription factor, an association with the expression of cyclooxygenase 2. More important, isolated exosomes from supernatants of macrophages exposed to lipopolysaccharides can also induce a metainflammation phenomenon, and when treated on hepatocytes, induced a rearrangement in cholesterol metabolism through sterol regulatory element-binding protein 2 (SREBP2), low-density lipoprotein receptor (LDLR), apolipoprotein A-I, and ABCA1. Moreover, we demonstrate the cellular effect of terpene-derived molecules, such as cryptotanshinone, isolated of plant Salvia brandegeei, regulating metainflammatory conditions through PERK pathway in both hepatocytes and ß cells. Our data suggest the presence of a modulatory mechanism on specific protein translation process. This effect could be mediated by eukaryotic initiation factor-4A, evaluating salubrinal as a control molecule. Likewise, the protective mechanisms of unsaturated fatty acids, such as oleic and palmitoleic acid were confirmed. Therefore, modulation of metainflammation suggests a new target through PERK signaling in cells with a high secretory activity, and possibly the regulation of cholesterol in hepatocytes is promoted via exosomes.


Subject(s)
Cholesterol/metabolism , Hepatocytes/metabolism , Inflammation/metabolism , Protein Biosynthesis , eIF-2 Kinase/metabolism , Animals , Camphanes , Cyclooxygenase 2/metabolism , Drugs, Chinese Herbal/pharmacology , Endoplasmic Reticulum Stress/drug effects , Exosomes/metabolism , Fatty Acids/metabolism , Fatty Acids/pharmacology , Inflammation/drug therapy , Insulin-Secreting Cells/metabolism , Mice , Panax notoginseng , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , RAW 264.7 Cells , Rats , Salvia miltiorrhiza , Signal Transduction/drug effects , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...