Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 12(2): 025008, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31805546

ABSTRACT

Mounting evidence supports the importance of the intestinal epithelial barrier and its permeability both in physiological and pathological conditions. Conventional in vitro models to evaluate intestinal permeability rely on the formation of tightly packed epithelial monolayers grown on hard substrates. These two-dimensional models lack the cellular and mechanical components of the non-epithelial compartment of the intestinal barrier, the stroma, which are key contributors to the barrier permeability in vivo. Thus, advanced in vitro models approaching the in vivo tissue composition are fundamental to improve precision in drug absorption predictions, to provide a better understanding of the intestinal biology, and to faithfully represent related diseases. Here, we generate photo-crosslinked gelatine methacrylate (GelMA)-poly(ethylene glycol) diacrylate (PEGDA) hydrogel co-networks that provide the required mechanical and biochemical features to mimic both the epithelial and stromal compartments of the intestinal mucosa, i.e. they are soft, cell adhesive and cell-loading friendly, and suitable for long-term culturing. We show that fibroblasts can be embedded in the GelMA-PEGDA hydrogels while epithelial cells can grow on top to form a mature epithelial monolayer that exhibits barrier properties which closely mimic those of the intestinal barrier in vivo, as shown by the physiologically relevant transepithelial electrical resistance (TEER) and permeability values. The presence of fibroblasts in the artificial stroma compartment accelerates the formation of the epithelial monolayer and boosts the recovery of the epithelial integrity upon temporary barrier disruption, demonstrating that our system is capable of successfully reproducing the interaction between different cellular compartments. As such, our hydrogel co-networks offer a technologically simple yet sophisticated approach to produce functional three-dimensional (3D) in vitro models of epithelial barriers with epithelial and stromal cells arranged in a spatially relevant manner and near-physiological functionality.


Subject(s)
Gelatin/chemistry , Hydrogels/chemistry , Intestinal Mucosa/cytology , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds/chemistry , Animals , Biomechanical Phenomena , Caco-2 Cells , Cell Adhesion , Cell Proliferation , Epithelial Cells/cytology , Fibroblasts/cytology , Humans , Mice , Models, Biological , NIH 3T3 Cells , Printing, Three-Dimensional/instrumentation , Tissue Engineering/instrumentation
2.
Lab Chip ; 19(15): 2568-2580, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31243422

ABSTRACT

Despite the increasing number of organs-on-a-chip that have been developed in the past decade, limited efforts have been made to integrate a sensing system for in situ continual measurements of biomarkers from three-dimensional (3D) tissues. Here, we present a custom-made integrated platform for muscle cell stimulation under fluidic conditions connected with a multiplexed high-sensitivity electrochemical sensing system for in situ monitoring. To demonstrate this, we use our system to measure the release levels and release time of interleukin 6 and tumor necrosis factor alpha in vitro by 3D muscle microtissue under electrical and biological stimulations. Our experimental design has enabled us to perform multiple time point measurements using functionalized screen-printed gold electrodes with sensitivity in the ng mL-1 range. This affordable setup is uniquely suited for monitoring factors released by 3D single cell types upon external stimulation for metabolic studies.


Subject(s)
Biosensing Techniques/instrumentation , Interleukin-6/metabolism , Lab-On-A-Chip Devices , Tumor Necrosis Factor-alpha/metabolism , Animals , Biosensing Techniques/economics , Cell Line , Cost-Benefit Analysis , Electrodes , Mice , Tin Compounds/chemistry
3.
Biofabrication ; 11(2): 025007, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30721885

ABSTRACT

Epithelial tissues contain three-dimensional (3D) complex microtopographies that are essential for proper performance. These microstructures provide cells with the physicochemical cues needed to guide their self-organization into functional tissue structures. However, most in vitro models do not implement these 3D architectural features. The main problem is the availability of simple fabrication techniques that can reproduce the complex geometries found in native tissues on the soft polymeric materials required as cell culture substrates. In this study reaction-diffusion mediated photolithography is used to fabricate 3D microstructures with complex geometries on poly(ethylene glycol)-based hydrogels in a single step and moldless approach. By controlling fabrication parameters such as the oxygen diffusion/depletion timescales, the distance to the light source and the exposure dose, the dimensions and geometry of the microstructures can be well-defined. In addition, copolymerization of poly(ethylene glycol) with acrylic acid improves control of the dynamic reaction-diffusion processes that govern the free-radical polymerization of highly-diluted polymeric solutions. Moreover, acrylic acid allows adjusting the density of cell adhesive ligands while preserving the mechanical properties of the hydrogels. The method proposed is a simple, single-step, and cost-effective strategy for producing models of intestinal epithelium that can be easily integrated into standard cell culture platforms.


Subject(s)
Hydrogels/chemistry , Intestines/physiology , Light , Polymerization , Tissue Engineering/methods , Acrylates/chemistry , Caco-2 Cells , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Humans , Ligands , Microtechnology , Polyethylene Glycols/chemistry , Time Factors , Tissue Scaffolds/chemistry
4.
Biosens Bioelectron X ; 2: 100025, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-32904308

ABSTRACT

Understanding the protein-secretion dynamics from single, specific tissues is critical toward the advancement of disease detection and treatments. However, such secretion dynamics remain difficult to measure in vivo due to the uncontrolled contributions from other tissue populations. Here, we describe an integrated platform designed for the reliable, near real-time measurements of cytokines secreted from an in vitro single-tissue model. In our setup, we grow 3D biomimetic tissues to discretize cytokine source, and we separate them from a magnetic microbead-based biosensing system using a Transwell insert. This design integrates physiochemically controlled biological activity, high-sensitivity protein detection (LOD < 20 pg mL-1), and rapid protein diffusion to enable non-invasive, near real-time measurements. To showcase the specificity and sensitivity of the system, we use our setup to probe the inflammatory process related to the protein Interleukine 6 (IL-6) and to the Tumor Necrosis Factor (TNF-α). We show that our setup can monitor the time-dependence profile of IL-6 and TNF-α secretion that results from the electrical and chemical stimulation of 3D skeletal muscle tissues. We demonstrate a novel and affordable methodology for discretizing the secretion kinetics of specific tissues for advancing metabolic-disorder studies and drug-screening applications.

5.
Macromol Biosci ; 18(10): e1800167, 2018 10.
Article in English | MEDLINE | ID: mdl-30156756

ABSTRACT

New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.


Subject(s)
Biocompatible Materials/chemistry , Bioprinting , Hydrogels/chemistry , Muscle Fibers, Skeletal/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Alginates/chemistry , Animals , Cell Line , Gelatin/chemistry , Mice , Muscle Fibers, Skeletal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...