Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38321962

ABSTRACT

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Subject(s)
DNA Damage , DNA Polymerase iota , DNA Replication , DNA-Directed DNA Polymerase , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , DNA Repair , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , DNA Primase/metabolism , DNA Primase/genetics , DNA Damage Tolerance
2.
Sci Adv ; 9(15): eade7997, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37058556

ABSTRACT

Recent studies have described a DNA damage tolerance pathway choice that involves a competition between PrimPol-mediated repriming and fork reversal. Screening different translesion DNA synthesis (TLS) polymerases by the use of tools for their depletion, we identified a unique role of Pol ι in regulating such a pathway choice. Pol ι deficiency unleashes PrimPol-dependent repriming, which accelerates DNA replication in a pathway that is epistatic with ZRANB3 knockdown. In Pol ι-depleted cells, the excess participation of PrimPol in nascent DNA elongation reduces replication stress signals, but thereby also checkpoint activation in S phase, triggering chromosome instability in M phase. This TLS-independent function of Pol ι requires its PCNA-interacting but not its polymerase domain. Our findings unravel an unanticipated role of Pol ι in protecting the genome stability of cells from detrimental changes in DNA replication dynamics caused by PrimPol.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , Humans , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , DNA/metabolism , DNA Repair , DNA Damage , Chromosomal Instability , DNA Primase/genetics , DNA Primase/metabolism , Multifunctional Enzymes/genetics , Multifunctional Enzymes/metabolism
3.
PLoS One ; 12(5): e0178370, 2017.
Article in English | MEDLINE | ID: mdl-28542476

ABSTRACT

MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Gene Expression , Humans , Male , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neoplasm Proteins/chemistry , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Protein Interaction Domains and Motifs , Protein Stability , Receptors, Androgen/metabolism , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...