Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963260

ABSTRACT

Although simulation results for gaseous adsorption on a surface of infinite extent, modeled with periodic conditions at the boundaries of the simulation box, agree with experimental data at high temperatures, simulated isotherms at temperatures below the triple point temperature show unphysical substeps because of the compromise of interactions within the box and interactions between the box and its mirror image boxes. This has been alleviated with surfaces of finite dimensions (Loi, Q. K.; Colloids Surf., A 2021, 622, 126690 and Castaño Plaza, O.; Langmuir 2023, 39 (21), 7456-7468) to account for free boundaries at the adsorbate patch on the surface, and the critical parameter of this model substrate is the size of the finite surface. If it is too small, the adsorbate patch does not model the physical reality; however, if it is too large, the computation time is excessive, making the simulation impractical. In this study, we used carbon dioxide/graphite as the model system to explore the effects of finite dimensions on the description of experimental data of Terlain, A.; Larher, Y. Surf. Sci. 1983, 125 (1), 304-311, especially for temperatures below the bulk triple point temperature. With the appropriate choice of graphene size, we derived the 2D triple point and 2D critical point temperatures of the monolayer, and most importantly, for temperatures below the 2D critical point temperature, the adsorption mechanism for the formation of the monolayer is due to the interplay between the boundary growth process and the vacancy filling. The extent of this interplay is found to depend on the fractional coverage of the surface.

2.
Langmuir ; 39(21): 7456-7468, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37192409

ABSTRACT

Monte Carlo simulations have been carried out to study argon adsorption on graphite at temperatures below the bulk triple point temperature, Ttr(bulk) = 83.8 K. Two models for graphite have been used to investigate the effects of an adsorbate patch with a free boundary on the layering temperatures, the two-dimensional (2D)-triple point and the 2D-critical point for the three adsorbate layers on the surface. The first model (S-model) has a planar surface of infinite extent in the two directions parallel to the surface, and the second is a finite (2D-patch model). Although simulations using both models describe the characteristic temperatures, only the 2D-patch model can represent the experimental isotherms accurately, and the condensation pressures at which first-order transitions occur, while simulations with the S-model yield many unphysical substeps that are not observed experimentally in the first layer adsorbate, which leads to a poor description of higher adsorbate layers. These results support the interpretation that boundary growth of an adsorbate patch is the mechanism for argon adsorption at temperatures below the bulk triple point temperature. Combining the results derived from this simulation study for temperatures below the bulk triple point temperature, with results reported in the literature for temperatures above Ttr(bulk) and experimental data, we have constructed a generic pattern for the adsorption isotherms of simple gases on graphite at temperatures ranging from well below the bulk triple point temperature up to the bulk critical temperature, a comprehensive description not widely recognized in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...