Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
BMC Genomics ; 12: 180, 2011 Apr 07.
Article in English | MEDLINE | ID: mdl-21473775

ABSTRACT

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) are the most-widely cultivated cold freshwater fish in the world and an important model species for many research areas. Coupling great interest in this species as a research model with the need for genetic improvement of aquaculture production efficiency traits justifies the continued development of genomics research resources. Many quantitative trait loci (QTL) have been identified for production and life-history traits in rainbow trout. An integrated physical and genetic map is needed to facilitate fine mapping of QTL and the selection of positional candidate genes for incorporation in marker-assisted selection (MAS) programs for improving rainbow trout aquaculture production. RESULTS: The first generation integrated map of the rainbow trout genome is composed of 238 BAC contigs anchored to chromosomes of the genetic map. It covers more than 10% of the genome across segments from all 29 chromosomes. Anchoring of 203 contigs to chromosomes of the National Center for Cool and Cold Water Aquaculture (NCCCWA) genetic map was achieved through mapping of 288 genetic markers derived from BAC end sequences (BES), screening of the BAC library with previously mapped markers and matching of SNPs with BES reads. In addition, 35 contigs were anchored to linkage groups of the INRA (French National Institute of Agricultural Research) genetic map through markers that were not informative for linkage analysis in the NCCCWA mapping panel. The ratio of physical to genetic linkage distances varied substantially among chromosomes and BAC contigs with an average of 3,033 Kb/cM. CONCLUSIONS: The integrated map described here provides a framework for a robust composite genome map for rainbow trout. This resource is needed for genomic analyses in this research model and economically important species and will facilitate comparative genome mapping with other salmonids and with model fish species. This resource will also facilitate efforts to assemble a whole-genome reference sequence for rainbow trout.


Subject(s)
Contig Mapping , Genome , Microsatellite Repeats , Oncorhynchus mykiss/genetics , Animals , Chromosomes, Artificial, Bacterial/genetics , Genetic Linkage , Genetic Markers , Genotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
2.
BMC Genomics ; 11: 554, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20937088

ABSTRACT

BACKGROUND: Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine species in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese flounder could be increased by developing disease-resistant fish and improving commercially important traits. Previous maps have been constructed with AFLP markers and a limited number of microsatellite markers. In this study, improved genetic linkage maps are presented. In contrast with previous studies, these maps were built mainly with a large number of codominant markers so they can potentially be used to analyze different families and populations. RESULTS: Sex-specific genetic linkage maps were constructed for the Japanese flounder including a total of 1,375 markers [1,268 microsatellites, 105 single nucleotide polymorphisms (SNPs) and two genes]; 1,167 markers are linked to the male map and 1,067 markers are linked to the female map. The lengths of the male and female maps are 1,147.7 cM and 833.8 cM, respectively. Based on estimations of map lengths, the female and male maps covered 79 and 82% of the genome, respectively. Recombination ratio in the new maps revealed F:M of 1:0.7. All linkage groups in the maps presented large differences in the location of sex-specific recombination hot-spots. CONCLUSIONS: The improved genetic linkage maps are very useful for QTL analyses and marker-assisted selection (MAS) breeding programs for economically important traits in Japanese flounder. In addition, SNP flanking sequences were blasted against Tetraodon nigroviridis (puffer fish) and Danio rerio (zebrafish), and synteny analysis has been carried out. The ability to detect synteny among species or genera based on homology analysis of SNP flanking sequences may provide opportunities to complement initial QTL experiments with candidate gene approaches from homologous chromosomal locations identified in related model organisms.


Subject(s)
Chromosome Mapping/methods , Flounder/genetics , Genetic Linkage , Animals , Female , Genome/genetics , Japan , Male , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Synteny/genetics
3.
Braz. arch. biol. technol ; 46(1): 135-141, Jan. 2003. tab, graf
Article in English | LILACS | ID: lil-334459

ABSTRACT

Studies were carried out to investigate the effect of temperature, salinity, ammonia, nitrite and nitrate on food consumption of pink shrimp Farfantepenaeus paulensis. Juveniles (0.2 - 0.4 g) were acclimated for 15 days in seawater with different temperatures, salinities and concentrations of ammonia, nitrite and nitrate. After the acclimation period, 20 shrimps per treatment were individualized in order to have their ration intake analyzed through the amount of ration offered and left over within a 24-hour period. Mean food consumption presented significant alterations (P<0.05) for the tested temperatures and nitrite concentrations, whereas for the salinity, ammonia and nitrate treatments, shrimp presented no alteration on food intake (P>0.05). According to the results obtained, temperature and nitrite affected F. paulensis food consumption. On the other hand, variables as salinity, ammonia and nitrate did not affect shrimp appetite. However, the possibility of this to happen over long periods, prejudicing the species culture in captivity, reinforced the necessity of regular water quality management

SELECTION OF CITATIONS
SEARCH DETAIL
...