Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Sci Rep ; 14(1): 12054, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802419

ABSTRACT

The effect of high-dose pyridoxine (PN) on activity of 5-fluorouracil (FUra) and folinic acid (FA)-containing regimens was studied in 50 patients including 14 with digestive tract, and 36 with breast carcinomas (BC) in advanced stages with poor prognostic characteristics. Patients with colorectal, and pancreas adenocarcinoma received oxaliplatin, irinotecan, FUra, FA (Folfirinox), and patients with squamous cell carcinoma of the esophagus had paclitaxel, carboplatin, FUra, FA (TCbF). Patients with BC received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) followed by TCbF or TCbF only, and patients who overexpressed HER2 received TCbF plus trastuzumab and pertuzumab. PN (1000-3000 mg/day iv) preceded each administration of FUra and FA. 47 patients (94%) responded, including 16 (32%) with CR. Median tumor reduction was 93%. Median event-free survival (EFS) was 37.7 months. The 25 patients with tumor shrinkage ≥ 91% had EFS of 52% from 42 months onwards. Unexpected toxicity did not occur. PN enhances potency of chemotherapy regimens comprising FUra and FA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Fluorouracil , Leucovorin , Pyridoxine , Humans , Fluorouracil/therapeutic use , Fluorouracil/administration & dosage , Leucovorin/therapeutic use , Pyridoxine/therapeutic use , Female , Middle Aged , Aged , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Adult , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoplasm Staging , Treatment Outcome
2.
Adv Ther ; 41(4): 1351-1371, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38443647

ABSTRACT

Stiripentol (Diacomit®) (STP) is an orally active antiseizure medication (ASM) indicated as adjunctive therapy, for the treatment of seizures associated with Dravet syndrome (DS), a severe form of childhood epilepsy, in conjunction with clobazam and, in some regions valproic acid. Since the discovery of STP, several mechanisms of action (MoA) have been described that may explain its specific effect on seizures associated with DS. STP is mainly considered as a potentiator of gamma-aminobutyric acid (GABA) neurotransmission: (i) via uptake blockade, (ii) inhibition of degradation, but also (iii) as a positive allosteric modulator of GABAA receptors, especially those containing α3 and δ subunits. Blockade of voltage-gated sodium and T-type calcium channels, which is classically associated with anticonvulsant and neuroprotective properties, has also been demonstrated for STP. Finally, several studies indicate that STP could regulate glucose energy metabolism and inhibit lactate dehydrogenase. STP is also an inhibitor of several cytochrome P450 enzymes involved in the metabolism of other ASMs, contributing to boost their anticonvulsant efficacy as add-on therapy. These different MoAs involved in treatment of DS and recent data suggest a potential for STP to treat other neurological or non-neurological diseases.


Subject(s)
Dioxolanes , Epilepsies, Myoclonic , Humans , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Dioxolanes/pharmacology , Dioxolanes/therapeutic use , Seizures/drug therapy , Epilepsies, Myoclonic/drug therapy , gamma-Aminobutyric Acid
3.
Cancers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760448

ABSTRACT

Glioblastomas are malignant brain tumors which remain lethal due to their aggressive and invasive nature. The standard treatment combines surgical resection, radiotherapy, and chemotherapy using Temozolomide, albeit with a minor impact on patient prognosis (15 months median survival). New therapies evaluated in preclinical translational models are therefore still required to improve patient survival and quality of life. In this preclinical study, we evaluated the effect of Temozolomide in different models of glioblastoma. We also aimed to investigate the efficacy of Fingolimod, an immunomodulatory drug for multiple sclerosis also described as an inhibitor of the sphingosine-1-phosphate (S1P)/S1P receptor axis. The effects of Fingolimod and Temozolomide were analyzed with in vitro 2D and 3D cellular assay and in vivo models using mouse and human glioblastoma cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated both in in vitro and in vivo models that Temozolomide has a varied effect depending on the tumor type (i.e., U87MG, U118MG, U138MG, and GL261), demonstrating sensitivity, acquired resistance, and purely resistant tumor phenotypes, as observed in patients. Conversely, Fingolimod only reduced in vitro 2D tumor cell growth and increased cytotoxicity. Indeed, Fingolimod had little or no effect on 3D spheroid cytotoxicity and was devoid of effect on in vivo tumor progression in Temozolomide-sensitive models. These results suggest that the efficacy of Fingolimod is dependent on the glioblastoma tumor microenvironment. Globally, our data suggest that the response to Temozolomide varies depending on the cancer model, consistent with its clinical activity, whereas the potential activity of Fingolimod may merit further evaluation.

4.
Cancers (Basel) ; 14(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35884608

ABSTRACT

Ethical considerations, cost, and time constraints have highlighted the need to develop alternatives to rodent in vivo models for evaluating drug candidates for cancer. The tumor chicken chorioallantoic membrane (TCAM) model provides an affordable and fast assay that permits direct visualization of tumor progression. Tumors from multiple species including rodents and human cell lines can be engrafted. In this study, we engrafted several tumor models onto the CAM and demonstrated that the TCAM model is an alternative to mouse models for preliminary cancer drug efficacy testing and toxicity analysis. Tumor cells were deposited onto CAM, and then grown for up to an additional 10 days before chronic treatments were administered. The drug response of anticancer therapies was screened in 12 tumor cell lines including glioblastoma, melanoma, breast, prostate, colorectal, liver, and lung cancer. Tumor-bearing eggs and tumor-bearing mice had a similar chemotherapy response (cisplatin and temozolomide) in four human and mouse tumor models. We also demonstrated that lethality observed in chicken embryos following chemotherapies such as cisplatin and cyclophosphamide were associated with corresponding side-effects in mice with body weight loss. According to our work, TCAM represents a relevant alternative model to mice in early preclinical oncology screening, providing insights for both the efficacy and the toxicity of anticancer drugs.

5.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897763

ABSTRACT

New therapies are required for patients with non-small cell lung cancer (NSCLC) for which the current standards of care poorly affect the patient prognosis of this aggressive cancer subtype. In this preclinical study, we aim to investigate the efficacy of Fingolimod, a described inhibitor of sphingosine-1-phosphate (S1P)/S1P receptors axis, and Dimethyl Fumarate (DMF), a methyl ester of fumaric acid, both already approved as immunomodulators in auto-immune diseases with additional expected anti-cancer effects. The impact of both drugs was analyzed with in vitro cell survival analysis and in vivo graft models using mouse and human NSCLC cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated that Fingolimod and DMF repressed tumor progression without apparent adverse effects in vivo in three preclinical mouse NSCLC models. In vitro, Fingolimod did not affect either the tumor proliferation or the cytotoxicity, although DMF reduced tumor cell proliferation. These results suggest that Fingolimod and DMF affected tumor progression through different cellular mechanisms within the tumor microenvironment. Fingolimod and DMF might uncover potential therapeutic opportunities in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Dimethyl Fumarate/pharmacology , Dimethyl Fumarate/therapeutic use , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Humans , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Lung Neoplasms/drug therapy , Mice , Tumor Microenvironment
6.
Sci Rep ; 12(1): 9079, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641554

ABSTRACT

High concentration pyridoxal 5'-phosphate, the cofactor of vitamin B6, potentiates cytotoxicity in cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA). We studied the effect of high-dose pyridoxine on antitumor activity of regimens comprising FUra and FA in 27 advanced breast carcinoma patients. Of 18 previously untreated patients, 12 had tumors that did not overexpress HER2 (Group I), and 6 that overexpressed HER2 (Group II). Nine patients (Group III) had prior chemotherapy. Group I received AVCF (doxorubicin, vinorelbine, cyclophosphamide, FUra, FA) or FAC (doxorubicin, cyclophosphamide, FUra, FA) followed by TCbF (paclitaxel carboplatin, FUra, FA). Groups II, and III received TCbF. Pyridoxine iv (1000-3000 mg/day) preceded each FA and FUra. Group II also received trastuzumab and pertuzumab. 26 patients responded. Three patients in Group I had CRs and 9 had PRs with 62-98% reduction rates; 4 patients in Group II had CRs and 2 had PRs with 98% reduction. Of 7 measurable patients in Group III, 2 attained CRs, and 5 had PRs with 81-94% reduction rates. Median time to response was 3.4 months. Unexpected toxicity did not occur. This pilot study suggests that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA.


Subject(s)
Breast Neoplasms , Fluorouracil , Leucovorin , Pyridoxine , Antineoplastic Combined Chemotherapy Protocols , Breast Neoplasms/pathology , Doxorubicin , Female , Fluorouracil/therapeutic use , Humans , Leucovorin/therapeutic use , Pilot Projects , Pyridoxine/therapeutic use
7.
Transl Oncol ; 20: 101405, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35339889

ABSTRACT

The recent development of immunotherapy represents a significant breakthrough in cancer therapy. Several immunotherapies provide robust efficacy gains in a wide variety of cancers. However, in some patients the immune checkpoint blockade remains ineffective due to poor therapeutic response and tumor relapse. An improved understanding of the mechanisms underlying tumor-immune system interactions can improve clinical management of cancer. Here, we report preclinical data evaluating two murine antibodies corresponding to recent FDA-approved antibodies for human therapy, e.g. anti-CTLA-4 and anti-PD-1. We demonstrated in two mouse syngeneic grafting models of triple negative breast or colon cancer that the two antibodies displayed an efficient anticancer activity, which is enhanced by combination treatment in the breast cancer model. We also demonstrated that CTLA-4 targeting reduced metastasis formation in the colon cancer metastasis model. In addition, using cytometry-based multiplex analysis, we showed that anti-CTLA-4 and anti-PD-1 affected the tumor immune microenvironment differently and in particular the tumor immune infiltration. This work demonstrated anti-cancer effect of CTLA-4 or PD-1 blockade on mouse colon and triple negative breast and on tumor-infiltrating immune cell subpopulations that could improve our knowledge and benefit the breast and colon cancer tumor research community.

8.
Sci Rep ; 11(1): 12668, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135415

ABSTRACT

Supplementation of cancer cells exposed to 5-fluorouracil (FUra) and folinic acid (FA) with high concentration pyridoxal 5'-phosphate, the cofactor of vitamin B6, potentiates the cytotoxicity of FUra in a synergistic interaction mode. We report a pilot study in 13 patients with previously untreated advanced carcinoma of the digestive tract to assess the impact of high-dose pyridoxine (PN) on the antitumor activity of regimens comprising FUra and FA. Five patients had colorectal adenocarcinoma (CRC); 5 had pancreas adenocarcinoma (PC); and 3 had squamous cell carcinoma of the esophagus (EC). Patients with CRC and with PC received oxaliplatin, irinotecan, FUra and FA, and patients with EC had paclitaxel, carboplatin, FUra and FA. PN iv from 1000 to 3000 mg/day preceded each administration of FA and FUra. Eleven patients responded. Two patients with CRC attained CRs and 3 had PRs with reduction rates ≥ 78%. Two patients with PC attained CRs, and 2 had PRs with reduction rates ≥ 79%. Responders experienced disappearance of most metastases. Of 3 patients with EC, 2 attained CRs. Median time to attain a response was 3 months. Unexpected toxicity did not occur. Results suggest that high-dose vitamin B6 enhances antitumor potency of regimens comprising FUra and FA.


Subject(s)
Gastrointestinal Neoplasms/drug therapy , Vitamin B Complex/therapeutic use , Adenocarcinoma/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Drug Combinations , Female , Fluorouracil/therapeutic use , Gastrointestinal Tract/pathology , Humans , Leucovorin/therapeutic use , Male , Middle Aged , Pilot Projects , Pyridoxine/therapeutic use
9.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028353

ABSTRACT

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Subject(s)
Biomedical Research/standards , Drug Evaluation, Preclinical/standards , Research Design/standards , Cooperative Behavior , Data Accuracy , Diffusion of Innovation , Europe , Humans , Interdisciplinary Communication , Quality Control , Quality Improvement , Stakeholder Participation
10.
Psychopharmacology (Berl) ; 238(2): 517-528, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33169202

ABSTRACT

RATIONALE: There is a need to develop animal models of schizophrenia-like behaviors that have both construct and predictive validity. Recently, a neonatal phencyclidine (PCP) and post-weaning social isolation dual-hit model was developed; however, its face and predictive validities need to be further investigated. OBJECTIVE: The aims of this study were to extend the characterization of the behavioral changes occurring in the neonatal PCP and post-weaning social isolation dual-hit rat model and to evaluate the effects of chronic treatment with clozapine on signs related to schizophrenia. METHODS: Male Wistar rat pups were treated with PCP (10 mg/kg s.c.) on postnatal days (PND) 7, 9, and 11. Starting from weaning, neonatal PCP-treated rat pups were socially isolated, while control saline-treated rats were group housed. At adulthood, rats were assessed using behavioral tasks evaluating locomotor activity, social recognition, prepulse inhibition, and reversal learning. Clozapine (3 mg/kg i.p.) was administered daily starting from a week before behavioral tests and until the end of the study. RESULTS: Neonatal PCP-treated and post-weaning social isolated (PCP-SI) rats displayed persistent and robust locomotor hyperactivity as well as social recognition impairment. The latter could not be explained by variations in the motivation to interact with a juvenile rat. Weak-to-moderate deficits in prepulse inhibition and reversal learning were also observed. Chronic treatment with clozapine attenuated the observed locomotor hyperactivity and social recognition deficits. CONCLUSION: The PCP-SI model presents enduring and robust deficits (hyperactivity and social recognition impairment) associated with positive symptoms and cognitive/social deficits of schizophrenia, respectively. These deficits are normalized by chronic treatment with clozapine, thereby confirming the predictive validity of this animal model.


Subject(s)
Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Executive Function/drug effects , Locomotion/drug effects , Phencyclidine/toxicity , Prepulse Inhibition/drug effects , Recognition, Psychology/drug effects , Social Isolation/psychology , Animals , Animals, Newborn , Behavior, Animal/drug effects , Disease Models, Animal , Male , Rats , Rats, Wistar , Reversal Learning/drug effects , Schizophrenia , Schizophrenic Psychology
11.
Transl Oncol ; 14(1): 100926, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33157518

ABSTRACT

Surgery followed by a chemotherapy agent is the first-line treatment for breast cancer patients. Nevertheless, new targets are required for women with triple-negative breast cancer (TNBC) in order to improve the treatment of this aggressive cancer subtype. Multiple pro-inflammatory molecules including lipid-based substances such as sphingosine-1-phosphate (S1P) promote cancer progression. In this preclinical study, we aim to investigate the efficacy of Fingolimod, an inhibitor of S1P / S1P receptors axis, already approved as an immunomodulator in multiple sclerosis. The impact of Fingolimod was analyzed using in vitro 2D and 3D cell survival analysis and in vivo orthotopic graft models, using mouse and human TNBC cells implanted in immunocompetent or immunodeficient mice, respectively. Resection of the tumor primary mass was also performed to mimic the clinical standard of care. We demonstrated that Fingolimod repressed tumor cell survival in vitro. We also showed in preclinical mouse TNBC models that Fingolimod repressed tumor progression and liver and spleen metastases without apparent adverse effects on the animals. Our data indicate that Fingolimod induces tumor cells apoptosis and thereby represses tumor progression. Globally, our data suggest that Fingolimod merits further evaluation as a potential therapeutic opportunity for TNBC.

12.
Brain Res ; 1751: 147173, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33148432

ABSTRACT

OBJECTIVES: The aim of this study was to characterize age-related deficits of mice using different behavioral endpoints, with a focus on executive function and performance heterogeneity. METHODS: 2 month-old and 18 month-old C57BL/6J mice were tested in the novelty-based spatial preference Y-maze test and in sequential tasks in the Morris water maze test (reference memory, reversal learning and working memory), before being evaluated for motor skills in the activity meter and accelerating rotarod tests. RESULTS: Aged mice displayed an almost normal acquisition in the water maze test, however, difficulties were observed in ability to perform reversal learning and working memory tasks. A marked heterogeneity characterized the performances of aged mice in both Morris water maze and Y-maze tests. Good and poor performers were observed in aged mice although the number of these mice varied depending on the cognitive parameter considered. CONCLUSION: Aged mice display deficits in executive function and working memory, with varying severity between individual subjects, something that is also observed in other older animals and humans. Taking into account the heterogeneity in aged subjects within the experimental design of studies evaluating pharmacological treatments represents a promising way to improve the translational value of preclinical studies. In future studies, preselection of poor performers administered with cognitive enhancers and use of good performers as controls is suggested so that all cohorts of aged mice show similar physical and motor characteristics.


Subject(s)
Cognitive Dysfunction/physiopathology , Executive Function/physiology , Memory, Short-Term/physiology , Age Factors , Aging/psychology , Animals , Cognition/physiology , Cognition Disorders , Disease Models, Animal , Female , Individuality , Male , Memory/physiology , Memory Disorders , Mice , Mice, Inbred C57BL , Motor Activity/physiology
13.
Handb Exp Pharmacol ; 257: 81-100, 2020.
Article in English | MEDLINE | ID: mdl-31696347

ABSTRACT

Most, if not all, guidelines, recommendations, and other texts on Good Research Practice emphasize the importance of blinding and randomization. There is, however, very limited specific guidance on when and how to apply blinding and randomization. This chapter aims to disambiguate these two terms by discussing what they mean, why they are applied, and how to conduct the acts of randomization and blinding. We discuss the use of blinding and randomization as the means against existing and potential risks of bias rather than a mandatory practice that is to be followed under all circumstances and at any cost. We argue that, in general, experiments should be blinded and randomized if (a) this is a confirmatory research that has a major impact on decision-making and that cannot be readily repeated (for ethical or resource-related reasons) and/or (b) no other measures can be applied to protect against existing and potential risks of bias.


Subject(s)
Bias , Practice Guidelines as Topic/standards , Random Allocation
14.
Article in English | MEDLINE | ID: mdl-29274391

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as preclinical tool for predicting drug-induced QT prolongation and arrhythmias. This study was conducted to assess the electrophysiological characteristics and the pharmacological sensitivity of two commercialized hiPSC-CMs. The baseline electrophysiological characteristics measured with a multi-electrode array (MEA) technology differ between Cor.4U and iCell2: higher beat rate (+32bpm) and shorter field potential duration (FPD, -201ms) for Cor.4U. The FPD lengthening after cisapride (100nM: +65% versus +18%), quinidine (10µM: +65% versus +31%), sotalol (30µM: +90% versus +47%) or flecainide (3µM: +76% versus +22%) application appeared earlier in iCell2 as compared to Cor.4U. Arrhythmia occurrence also appeared earlier in iCell2 as compared to Cor.4U for the 3 substances mentioned above. The FPD shortening recorded after verapamil or nifedipine application was similar in both hiPSC-CMs. In conclusion, Cor.4U and iCell2 hiPSC-CMs are both sensitive enough to detect drug-induced delayed or shortened repolarization and arrhythmia and can provide useful predictive cardiac electrophysiology data. Arrhythmias occurred at concentrations higher than clinical free maximum plasma concentrations with an overestimation of the risk with cisapride. However, quantitative differences of baseline electrophysiological characteristics or pharmacological sensitivity of both cell types have to be considered with caution during the interpretation of data. The new chemical entities included within a given drug development program should be evaluated in hiPSC-CMs coming from a single supplier.


Subject(s)
Electrophysiological Phenomena/physiology , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Action Potentials/drug effects , Action Potentials/physiology , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/pathology , Cells, Cultured , Cisapride/pharmacology , Drug Evaluation, Preclinical/methods , Electrophysiological Phenomena/drug effects , Flecainide/pharmacology , Heart Rate/drug effects , Heart Rate/physiology , Humans , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Nifedipine/pharmacology , Quinidine/pharmacology , Sotalol/pharmacology , Verapamil/pharmacology
15.
Regul Toxicol Pharmacol ; 88: 1-11, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28506844

ABSTRACT

Drug-induced QT prolongation is a major safety issue in the drug discovery process. This study was conducted to assess the electrophysiological responses of four substances using established preclinical assays usually used in regulatory studies (hERG channel or Purkinje fiber action potential) and a new assay (human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)-field potential). After acute exposure, moxifloxacin and dofetilide concentration-dependently decreased IKr amplitude (IC50 values: 102 µM and 40 nM, respectively) and lengthened action potential (100 µM moxifloxacin: +23% and 10 nM dofetilide: +18%) and field potential (300 µM moxifloxacin: +76% and 10 nM dofetilide: +38%) durations. Dofetilide starting from 30 nM induced arrhythmia in hiPSC-CMs. Overnight application of pentamidine (10 and 100 µM) and arsenic (1 and 10 µM) decreased IKr, whereas they were devoid of effects after acute application. Long-term pentamidine incubation showed a time- and concentration-dependent effect on field potential duration. In conclusion, our data suggest that hiPSC-CMs represent a fully functional cellular electrophysiology model which may significantly improve the predictive validity of in vitro safety studies. Thereafter, lead candidates may be further investigated in patch-clamp assays for mechanistic studies on individual ionic channels or in a multicellular Purkinje fiber preparation for confirmatory studies on cardiac conduction.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/toxicity , Drug Evaluation, Preclinical/methods , Induced Pluripotent Stem Cells/drug effects , Myocytes, Cardiac/drug effects , Action Potentials/physiology , Arsenic/toxicity , Dose-Response Relationship, Drug , Drug Discovery , Fluoroquinolones/toxicity , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/physiology , Long QT Syndrome/chemically induced , Moxifloxacin , Myocytes, Cardiac/physiology , Pentamidine/administration & dosage , Pentamidine/toxicity , Phenethylamines/toxicity , Risk Assessment , Sulfonamides/toxicity
16.
Epilepsy Res ; 134: 9-15, 2017 08.
Article in English | MEDLINE | ID: mdl-28521116

ABSTRACT

Usually performed in the mouse, the 6Hz seizure test is used for screening potential new anticonvulsant substances against complex partial seizures. Nevertheless, advanced models of temporal lobe epilepsy (TLE) are more often performed in rats, so that possible species-related differences may complicate the development of anticonvulsant substances. The aim of the present study was to evaluate the feasibility of adapting the 6Hz test in the rat. We first compared the effects of increasing current intensities for inducing seizures in the mouse and in the rat. This step was followed by the evaluation of the activity of anticonvulsant substances. Animals received an electrical stimulation with a constant current via corneal electrodes. The seizure was characterized by the presence of forelimb clonus immediately after stimulation. Spontaneous locomotion was evaluated following the 6Hz test. In the rat, the forelimb seizure score was intensity-dependently increased and seizures were observed in all animals tested at 44mA. In the mouse, the seizures were of lower magnitude and they were not observed in all mice stimulated at 44mA. In both species, levetiracetam (LEV) clearly decreased the forelimb seizure score over the dose-range 100-300mg/kg without affecting locomotion. Valproate (VPA) displayed anticonvulsant activity at 200mg/kg and fully protected both species at 300mg/kg, a dose producing sedative effects in the mouse. Phenytoin (PHT) showed slight to moderate anticonvulsant activity at 100mg/kg in the mouse and at 60 and 100mg/kg in the rat without modifying locomotor activity. Lamotrigine (LTG) partially antagonized forelimb seizure at 60mg/kg in the mouse and at 30-60mg/kg in the rat, but it induced clear motor impairments at high dose in both species. Our data suggest that in the 6Hz test, the magnitude and the nature of seizures differed between the mouse and the rat for a given current intensity. Nevertheless, the pharmacological profile of anticonvulsant substances was similar in both species for the 4 substances tested. Dose-dependent efficacy of LEV and VPA was observed and LTG and PHT also showed anticonvulsant activity, even though the magnitude of the effects remained moderate for these two last substances. The 6Hz test in the rat therefore appears as a useful model which may be performed prior to follow-up models of partial seizures performed in the same species.


Subject(s)
Anticonvulsants/therapeutic use , Disease Models, Animal , Electric Stimulation/adverse effects , Seizures/drug therapy , Seizures/etiology , Analysis of Variance , Animals , Biophysical Phenomena , Dose-Response Relationship, Drug , Forelimb/physiopathology , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Rats , Species Specificity , Treatment Outcome
17.
Fundam Clin Pharmacol ; 31(2): 155-164, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27739140

ABSTRACT

Gastric mucosa is frequently exposed to various gastric irritants, and there is a continuing requirement to develop new gastro-protective agents. This study compares the effects of three such agents, sucralfate, rebamipide, and cimetidine in both in vivo and in vitro indomethacin-induced gastric damage models. For the in vivo approach, rats were orally administered sucralfate, rebamipide, and cimetidine at 300 mg/kg before an acute dose of indomethacin (30 mg/kg). Gastric lesions were then macroscopically examined. For the in vitro approach, gastric mucosal cells were incubated with sucralfate (3 and 5 mg/mL), rebamipide (0.3 and 1 mm), and cimetidine (10 and 50 µg/mL) before exposure to indomethacin (3.8 mm). The release of lactate dehydrogenase (LDH) and mitochondrial function were then measured. Sucralfate, rebamipide, and cimetidine displayed gastro-protective effects in vivo (decreased number of gastric ulcers: -50% P < 0.05, -22% NS, and -69% P < 0.05, respectively, and reduced length of gastric lesions: -62% P < 0.05, -29% NS, and -70% P < 0.001, respectively). Cell damage induced by indomethacin in vitro was inhibited by sucralfate (LDH release) and by rebamipide and cimetidine (mitochondrial function and LDH release). In contrast, sucralfate accentuated the indomethacin-induced decrease in mitochondrial function. Although cultured gastric cells offer a promising tool for evaluating the cytotoxic or protective effects of test compounds, data from in vivo models are still needed to confirm in vitro data. Using both approaches provides more comprehensive insight into the effects of test compounds on the gastric mucosa.


Subject(s)
Alanine/analogs & derivatives , Cimetidine/pharmacology , Gastric Mucosa/drug effects , Quinolones/pharmacology , Stomach Ulcer/prevention & control , Sucralfate/pharmacology , Alanine/administration & dosage , Alanine/pharmacology , Animals , Anti-Ulcer Agents/administration & dosage , Anti-Ulcer Agents/pharmacology , Cimetidine/administration & dosage , Dose-Response Relationship, Drug , Gastric Mucosa/pathology , Indomethacin/toxicity , L-Lactate Dehydrogenase/metabolism , Male , Mitochondria/pathology , Quinolones/administration & dosage , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced , Sucralfate/administration & dosage
18.
Article in English | MEDLINE | ID: mdl-27477617

ABSTRACT

INTRODUCTION: Nausea is a subjective sensation often preceding emesis in humans. Drug-induced nausea remains difficult to predict in preclinical tests. The aim of this study was to compare the effects of emetic agents in rats (pica behavior), ferrets (acute and delayed phases of emesis) or dogs (emesis and cardiovascular endpoints). METHODS: Rats and ferrets were administered cisplatin (±aprepitant/ondansetron or aprepitant) or apomorphine (±domperidone). Telemetered dogs were administered apomorphine (±domperidone). Food and kaolin intake was measured in rats whereas the number of emetic events was counted in ferrets and dogs. Cardiovascular changes were also monitored in dogs. RESULTS: In rats, cisplatin (6mg/kg, i.p.) increased kaolin intake (+2257%, p<0.001). The cisplatin effects were not reversed by the combination of aprepitant/ondansetron (2mg/kg, p.o./2mg/kg, i.p.) or by aprepitant (30mg/kg, p.o.). Apomorphine (10mg/kg, i.p.) did not induce pica behavior. In ferrets, cisplatin (8mg/kg, i.p.) induced acute and delayed emesis (371.8±47.8 emetic events over 72h) which was antagonized by aprepitant (1mg/kg, p.o.). Apomorphine (0.25mg/kg, s.c.) induced acute emesis (38.8±8.7 emetic events over 2h) which was abolished by domperidone (0.1mg/kg, s.c.). In dogs, apomorphine (100µg/kg, s.c.) induced emesis and tachycardia which were decreased by domperidone (0.2mg/kg, i.v.). CONCLUSIONS: The assessment of emesis in the ferret or in the dog displays a strong predictive value. In contrast, assessing nausea remains challenging in all animal species and the use of pica behavior remains questionable in the context of antiemetic drug development.


Subject(s)
Antiemetics/therapeutic use , Apomorphine/adverse effects , Cisplatin/adverse effects , Nausea/chemically induced , Vomiting/chemically induced , Animals , Antiemetics/administration & dosage , Aprepitant , Disease Models, Animal , Dogs , Domperidone/administration & dosage , Domperidone/therapeutic use , Drug Evaluation, Preclinical , Ferrets , Kaolin/pharmacology , Male , Morpholines/administration & dosage , Morpholines/therapeutic use , Nausea/prevention & control , Rats, Wistar , Species Specificity , Telemetry , Vomiting/prevention & control
19.
J Pharmacol Toxicol Methods ; 81: 286-94, 2016.
Article in English | MEDLINE | ID: mdl-27071953

ABSTRACT

INTRODUCTION: The guidelines from different agencies do not include studies on cognitive functions as part of safety pharmacology. This is unfortunate as it seems important to verify that drugs entering into the central nervous system (CNS) are devoid of detrimental effects on cognition. Our aim is to show examples on how an evaluation of unwanted effects of drugs on cognitive functions may be included in preclinical studies. Rather than a review of the scientific context, the present text is an appeal for a wider consideration of cognition as a safety pharmacology endpoint. METHODS: The following procedures provide an index of the ability of substances to induce cognitive deficits in rodents. In the passive avoidance (PA) test, rats receiving an electric shock show on a later occasion an avoidance of the shock-associated environment. In the social recognition (SR) test, rats recognize familiar congeners. In the Morris water maze (MWM) test, rats placed into a tank containing water learn to find an invisible escape platform using extra-maze visual cues. In the delayed alternation (DA) test, rats placed in a Skinner box learn to alternate their pressing behavior between two levers in order to obtain food rewards. In the operant reversal (OR) test, rats adapt their behavior following a change of the reinforcement rule. RESULTS: Standard reference agents were used to confirm that the different assays were able to detect pharmacologically induced cognitive impairments. Diazepam decreased associative memory performances in the PA test. MK-801-induced memory deficits in SR. Haloperidol increased escape latencies in the MWM test. Scopolamine decreased the number of correct responses in the DA test, and nicotine decreased the number of correct responses in the OR test. The relationship between the doses administered and the effects observed was also evaluated. DISCUSSION: Cognitive assays may provide utility in determining potential undesirable effects or discharging perceived risks with novel CNS drugs under development.


Subject(s)
Central Nervous System Diseases/chemically induced , Drug Evaluation, Preclinical/methods , Animals , Cognition/drug effects , Conditioning, Operant/drug effects , Endpoint Determination , Escape Reaction/drug effects , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/psychology , Psychomotor Performance/drug effects , Rats , Rats, Wistar , Recognition, Psychology/drug effects , Reinforcement Schedule , Reversal Learning/drug effects , Safety
20.
Eur J Pharmacol ; 777: 147-55, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26948316

ABSTRACT

At present there is no satisfactory treatment against relapse of drug-seeking behavior. Relapse can be modeled in laboratory animals using reinstatement procedures, whereby previously extinguished self-administration for a drug is reinstated by different factors, such as exposure to cues or drug priming. It is thought that activation of gamma-aminobutyric acid (GABA) B receptor complexes could represent a promising approach to pharmacotherapy for diminishing relapse potential with drugs possessing reinforcing properties. The effects of baclofen (a prototypic GABAB receptor agonist) on cue-induced cocaine reinstatement were evaluated in the rat with or without a priming injection of cocaine. The effects of raclopride (an antagonist of dopamine D2 receptors) were also evaluated. Cue-induced reinstatement under vehicle resulted in a significant increase in the number of presses on the active lever, as compared with extinction lever responding. This effect was accentuated in rats receiving a priming injection of cocaine (cocaine-plus-cue-induced reinstatement). Baclofen, at doses without effects on food-motivated operant behavior (2.5 and 5mg/kg i.p.), dose-dependently decreased the number of active lever presses during cue-induced reinstatement. Baclofen had slightly weaker effects on cocaine-plus-cue-induced reinstatement. Raclopride (0.08 and 0.15 mg/kg s.c.) had similar effects against cue-induced reinstatement although it failed to inhibit cocaine-plus-cue-induced reinstatement at the lower dose. Baclofen dose-dependently and selectively decreased reinstatement of cocaine self-administration. The data obtained provide support for the potential anti-craving efficacy of baclofen in the treatment of cocaine drug-seeking.


Subject(s)
Baclofen/pharmacology , Cocaine/pharmacology , Raclopride/pharmacology , Animals , Behavior, Animal/drug effects , Cocaine/administration & dosage , Dopamine D2 Receptor Antagonists/pharmacology , Drug-Seeking Behavior/drug effects , Extinction, Psychological/drug effects , Male , Motivation/drug effects , Rats , Rats, Sprague-Dawley , Recurrence , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL
...