Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
2.
Mol Psychiatry ; 29(1): 186-196, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102483

ABSTRACT

Autism spectrum disorder (ASD) comprises a large group of neurodevelopmental conditions featuring, over a wide range of severity and combinations, a core set of manifestations (restricted sociality, stereotyped behavior and language impairment) alongside various comorbidities. Common and rare variants in several hundreds of genes and regulatory regions have been implicated in the molecular pathogenesis of ASD along a range of causation evidence strength. Despite significant progress in elucidating the impact of few paradigmatic individual loci, such sheer complexity in the genetic architecture underlying ASD as a whole has hampered the identification of convergent actionable hubs hypothesized to relay between the vastness of risk alleles and the core phenotypes. In turn this has limited the development of strategies that can revert or ameliorate this condition, calling for a systems-level approach to probe the cross-talk of cooperating genes in terms of causal interaction networks in order to make convergences experimentally tractable and reveal their clinical actionability. As a first step in this direction, we have captured from the scientific literature information on the causal links between the genes whose variants have been associated with ASD and the whole human proteome. This information has been annotated in a computer readable format in the SIGNOR database and is made freely available in the resource website. To link this information to cell functions and phenotypes, we have developed graph algorithms that estimate the functional distance of any protein in the SIGNOR causal interactome to phenotypes and pathways. The main novelty of our approach resides in the possibility to explore the mechanistic links connecting the suggested gene-phenotype relations.


Subject(s)
Autism Spectrum Disorder , Genetic Predisposition to Disease , Neurodevelopmental Disorders , Phenotype , Humans , Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease/genetics , Neurodevelopmental Disorders/genetics , Gene Regulatory Networks/genetics , Autistic Disorder/genetics , Genetic Association Studies/methods , Proteome/genetics
3.
Nucleic Acids Res ; 51(D1): D631-D637, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36243968

ABSTRACT

The SIGnaling Network Open Resource (SIGNOR 3.0, https://signor.uniroma2.it) is a public repository that captures causal information and represents it according to an 'activity-flow' model. SIGNOR provides freely-accessible static maps of causal interactions that can be tailored, pruned and refined to build dynamic and predictive models. Each signaling relationship is annotated with an effect (up/down-regulation) and with the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the regulation of the target entity. Since its latest release, SIGNOR has undergone a significant upgrade including: (i) a new website that offers an improved user experience and novel advanced search and graph tools; (ii) a significant content growth adding up to a total of approx. 33,000 manually-annotated causal relationships between more than 8900 biological entities; (iii) an increase in the number of manually annotated pathways, currently including pathways deregulated by SARS-CoV-2 infection or involved in neurodevelopment synaptic transmission and metabolism, among others; (iv) additional features such as new model to represent metabolic reactions and a new confidence score assigned to each interaction.


Subject(s)
Databases, Protein , Humans , COVID-19 , Phosphorylation , SARS-CoV-2/genetics , Signal Transduction , Gene Expression Regulation
4.
Front Mol Biosci ; 9: 893256, 2022.
Article in English | MEDLINE | ID: mdl-35664677

ABSTRACT

Some inherited or somatically-acquired gene variants are observed significantly more frequently in the genome of cancer cells. Although many of these cannot be confidently classified as driver mutations, they may contribute to shaping a cell environment that favours cancer onset and development. Understanding how these gene variants causally affect cancer phenotypes may help developing strategies for reverting the disease phenotype. Here we focus on variants of genes whose products have the potential to modulate metabolism to support uncontrolled cell growth. Over recent months our team of expert curators has undertaken an effort to annotate in the database SIGNOR 1) metabolic pathways that are deregulated in cancer and 2) interactions connecting oncogenes and tumour suppressors to metabolic enzymes. In addition, we refined a recently developed graph analysis tool that permits users to infer causal paths leading from any human gene to modulation of metabolic pathways. The tool grounds on a human signed and directed network that connects ∼8400 biological entities such as proteins and protein complexes via causal relationships. The network, which is based on more than 30,000 published causal links, can be downloaded from the SIGNOR website. In addition, as SIGNOR stores information on drugs or other chemicals targeting the activity of many of the genes in the network, the identification of likely functional paths offers a rational framework for exploring new therapeutic strategies that revert the disease phenotype.

5.
Cell Death Discov ; 8(1): 16, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013135

ABSTRACT

Repurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds, which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to different drug repurposing projects.

6.
Biomolecules ; 11(8)2021 08 08.
Article in English | MEDLINE | ID: mdl-34439837

ABSTRACT

Repeated mechanical stress causes injuries in the adult skeletal muscle that need to be repaired. Although muscle regeneration is a highly efficient process, it fails in some pathological conditions, compromising tissue functionality. This may be caused by aberrant cell-cell communication, resulting in the deposition of fibrotic and adipose infiltrates. Here, we investigate in vivo changes in the profile of skeletal muscle secretome during the regeneration process to suggest new targetable regulatory circuits whose failure may lead to tissue degeneration in pathological conditions. We describe the kinetic variation of expression levels of 76 secreted proteins during the regeneration process. In addition, we profile the gene expression of immune cells, endothelial cells, satellite cells, and fibro-adipogenic progenitors. This analysis allowed us to annotate each cell-type with the cytokines and receptors they have the potential to synthetize, thus making it possible to draw a cell-cell interaction map. We next selected 12 cytokines whose receptors are expressed in FAPs and tested their ability to modulate FAP adipogenesis and proliferation. We observed that IL1α and IL1ß potently inhibit FAP adipogenesis, while EGF and BTC notably promote FAP proliferation. In addition, we characterized the cross-talk mediated by extracellular vesicles (EVs). We first monitored the modulation of muscle EV cargo during tissue regeneration. Using a single-vesicle flow cytometry approach, we observed that EVs differentially affect the uptake of RNA and proteins into their lumen. We also investigated the EV capability to interact with SCs and FAPs and to modulate their proliferation and differentiation. We conclude that both cytokines and EVs secreted during muscle regeneration have the potential to modulate adipogenic differentiation of FAPs. The results of our approach provide a system-wide picture of mechanisms that control cell fate during the regeneration process in the muscle niche.


Subject(s)
Adipogenesis/genetics , Extracellular Vesicles/metabolism , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Muscle, Skeletal/drug effects , Regeneration/genetics , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cardiotoxins/toxicity , Cell Communication/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/classification , Cytokines/genetics , Cytokines/metabolism , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Vesicles/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Profiling , Gene Expression Regulation , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Proteome/classification , Proteome/genetics , Proteome/metabolism , Regeneration/drug effects , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism
7.
Genes (Basel) ; 12(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33809949

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than 2.3 million casualties worldwide and the lack of effective treatments is a major health concern. The development of targeted drugs is held back due to a limited understanding of the molecular mechanisms underlying the perturbation of cell physiology observed after viral infection. Recently, several approaches, aimed at identifying cellular proteins that may contribute to COVID-19 pathology, have been reported. Albeit valuable, this information offers limited mechanistic insight as these efforts have produced long lists of cellular proteins, the majority of which are not annotated to any cellular pathway. We have embarked in a project aimed at bridging this mechanistic gap by developing a new bioinformatic approach to estimate the functional distance between a subset of proteins and a list of pathways. A comprehensive literature search allowed us to annotate, in the SIGNOR 2.0 resource, causal information underlying the main molecular mechanisms through which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses affect the host-cell physiology. Next, we developed a new strategy that enabled us to link SARS-CoV-2 interacting proteins to cellular phenotypes via paths of causal relationships. Remarkably, the extensive information about inhibitors of signaling proteins annotated in SIGNOR 2.0 makes it possible to formulate new potential therapeutic strategies. The proposed approach, which is generally applicable, generated a literature-based causal network that can be used as a framework to formulate informed mechanistic hypotheses on COVID-19 etiology and pathology.


Subject(s)
Autophagy/genetics , COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , Signal Transduction , COVID-19/genetics , COVID-19/pathology , Gene Ontology , Gene Regulatory Networks , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/virology , Proteome , PubMed , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
8.
J Clin Med ; 10(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671425

ABSTRACT

The embryonal rhabdomyosarcoma (eRMS) is a soft tissue sarcoma commonly affecting the head and neck, the extremities and the genitourinary tract. To contribute to revealing the cell types that may originate this tumor, we exploited mass cytometry, a single-cell technique that, by using heavy-metal-tagged antibodies, allows the accurate monitoring of the changes occurring in the mononuclear cell composition of skeletal muscle tissue during tumor development. To this end, we compared cell populations of healthy muscles with those from spatiotemporal-induced eRMS tumors in a mouse model (LSL-KrasG12D/+;Tp53Fl/Fl) that can be used to develop rhabdomyosarcoma by means of infection with an adenovirus vector expressing Cre (Ad-Cre) recombinase. By monitoring different time points after tumor induction, we were able to analyze tumor progression and composition, identifying fibro/adipogenic progenitors (FAPs) as the cell type that, in this model system, had a pivotal role in tumor development. In vitro studies highlighted that both FAPs and satellite cells (SCs), upon infection with the Ad-Cre, acquired the potential to develop rhabdomyosarcomas when transplanted into immunocompromised mice. However, only infected FAPs had an antigen profile that was similar to embryonal rhabdomyosarcoma cells. Overall, our analysis supports the involvement of FAPs in eRMS development.

9.
J Pers Med ; 11(2)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578936

ABSTRACT

High throughput technologies such as deep sequencing and proteomics are increasingly becoming mainstream in clinical practice and support diagnosis and patient stratification. Developing computational models that recapitulate cell physiology and its perturbations in disease is a required step to help with the interpretation of results of high content experiments and to devise personalized treatments. As complete cell-models are difficult to achieve, given limited experimental information and insurmountable computational problems, approximate approaches should be considered. We present here a general approach to modeling complex diseases by embedding patient-specific genomics data into actionable logic models that take into account prior knowledge. We apply the strategy to acute myeloid leukemia (AML) and assemble a network of logical relationships linking most of the genes that are found frequently mutated in AML patients. We derive Boolean models from this network and we show that by priming the model with genomic data we can infer relevant patient-specific clinical features. Here we propose that the integration of literature-derived causal networks with patient-specific data should be explored to help bedside decisions.

10.
EMBO Mol Med ; 13(3): e12778, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33587336

ABSTRACT

The importance of skeletal muscle tissue is undoubted being the controller of several vital functions including respiration and all voluntary locomotion activities. However, its regenerative capability is limited and significant tissue loss often leads to a chronic pathologic condition known as volumetric muscle loss. Here, we propose a biofabrication approach to rapidly restore skeletal muscle mass, 3D histoarchitecture, and functionality. By recapitulating muscle anisotropic organization at the microscale level, we demonstrate to efficiently guide cell differentiation and myobundle formation both in vitro and in vivo. Of note, upon implantation, the biofabricated myo-substitutes support the formation of new blood vessels and neuromuscular junctions-pivotal aspects for cell survival and muscle contractile functionalities-together with an advanced muscle mass and force recovery. Altogether, these data represent a solid base for further testing the myo-substitutes in large animal size and a promising platform to be eventually translated into clinical scenarios.


Subject(s)
Muscular Diseases , Tissue Engineering , Animals , Cell Differentiation , Humans , Mice , Muscle, Skeletal
11.
Cell Death Dis ; 12(1): 122, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495447

ABSTRACT

The term micro-heterogeneity refers to non-genetic cell to cell variability observed in a bell-shaped distribution of the expression of a trait within a population. The contribution of micro-heterogeneity to physiology and pathology remains largely uncharacterised. To address such an issue, we investigated the impact of heterogeneity in skeletal muscle fibro/adipogenic progenitors (FAPs) isolated from an animal model of Duchenne muscular dystrophy (DMD), the mdx mouse. FAPs play an essential role in muscle homoeostasis. However, in pathological conditions or ageing, they are the source of intramuscular infiltrations of fibrotic or adipose tissue. By applying a multiplex flow cytometry assay, we characterised and purified from mdx muscles two FAP cell states expressing different levels of SCA-1. The two cell states are morphologically identical and repopulate each other after several growth cycles. However, they differ in their in vitro behaviour. Cells expressing higher levels of SCA-1 (SCA1-High-FAPs) differentiate more readily into adipocytes while, when exposed to a fibrogenic stimulation, increase the expression of Col1a1 and Timp1 mRNA. A transcriptomic analysis confirmed the adipogenic propensity of SCA1-High-FAPs. In addition, SCA1-High-FAPs proliferate more extensively ex vivo and display more proliferating cells in dystrophic muscles in comparison to SCA1-Low-FAPs. Adipogenesis of both FAP cell states is inhibited in vitro by leucocytes from young dystrophic mice, while leucocytes isolated from aged dystrophic mice are less effective in limiting the adipogenesis of SCA1-High-FAPs suggesting a differential regulatory effect of the microenvironment on micro-heterogeneity. Our data suggest that FAP micro-heterogeneity is modulated in pathological conditions and that this heterogeneity in turn may impact on the behaviour of interstitial mesenchymal cells in genetic diseases.


Subject(s)
Adipogenesis/physiology , Antigens, Ly/metabolism , Membrane Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Cell Differentiation , Mice
12.
Biomolecules ; 10(11)2020 11 11.
Article in English | MEDLINE | ID: mdl-33187263

ABSTRACT

RNF11 (Ring Finger Protein 11) is a 154 amino-acid long protein that contains a RING-H2 domain, whose sequence has remained substantially unchanged throughout vertebrate evolution. RNF11 has drawn attention as a modulator of protein degradation by HECT E3 ligases. Indeed, the large number of substrates that are regulated by HECT ligases, such as ITCH, SMURF1/2, WWP1/2, and NEDD4, and their role in turning off the signaling by ubiquitin-mediated degradation, candidates RNF11 as the master regulator of a plethora of signaling pathways. Starting from the analysis of the primary sequence motifs and from the list of RNF11 protein partners, we summarize the evidence implicating RNF11 as an important player in modulating ubiquitin-regulated processes that are involved in transforming growth factor beta (TGF-ß), nuclear factor-κB (NF-κB), and Epidermal Growth Factor (EGF) signaling pathways. This connection appears to be particularly significant, since RNF11 is overexpressed in several tumors, even though its role as tumor growth inhibitor or promoter is still controversial. The review highlights the different facets and peculiarities of this unconventional small RING-E3 ligase and its implication in tumorigenesis, invasion, neuroinflammation, and cancer metastasis.


Subject(s)
DNA-Binding Proteins/metabolism , Animals , DNA-Binding Proteins/genetics , Humans , Neoplasms/genetics , Neoplasms/metabolism , Proteolysis , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
13.
Cells ; 9(7)2020 07 18.
Article in English | MEDLINE | ID: mdl-32708412

ABSTRACT

The interstitial space surrounding the skeletal muscle fibers is populated by a variety of mononuclear cell types. Upon acute or chronic insult, these cell populations become activated and initiate finely-orchestrated crosstalk that promotes myofiber repair and regeneration. Mass cytometry is a powerful and highly multiplexed technique for profiling single-cells. Herein, it was used to dissect the dynamics of cell populations in the skeletal muscle in physiological and pathological conditions. Here, we characterized an antibody panel that could be used to identify most of the cell populations in the muscle interstitial space. By exploiting the mass cytometry resolution, we provided a comprehensive picture of the dynamics of the major cell populations that sensed and responded to acute damage in wild type mice and in a mouse model of Duchenne muscular dystrophy. In addition, we revealed the intrinsic heterogeneity of many of these cell populations.


Subject(s)
Muscle, Skeletal/pathology , Regeneration , Single-Cell Analysis/methods , Animals , Cardiotoxins , Cell Count , Disease Models, Animal , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/pathology
14.
Cell Death Differ ; 27(10): 2921-2941, 2020 10.
Article in English | MEDLINE | ID: mdl-32382110

ABSTRACT

Fibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/ß-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling. Consistently, pharmacological blockade of GSK3, by the LY2090314 inhibitor, stabilizes ß-catenin and represses PPARγ expression abrogating FAP adipogenesis ex vivo while limiting fatty degeneration in vivo. Furthermore, GSK3 inhibition improves the FAP pro-myogenic role by efficiently stimulating, via follistatin secretion, muscle satellite cell (MuSC) differentiation into mature myotubes. Combining, publicly available single-cell RNAseq datasets, we characterize FAPs as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche. Lastly, we identify WNT5a, whose expression is impaired in dystrophic FAPs, as a crucial WNT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the ß-catenin signaling.


Subject(s)
Adipogenesis , Muscle Development , Muscle, Skeletal , Animals , Cell Differentiation , Cells, Cultured , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Primary Cell Culture , Stem Cells , Wnt Signaling Pathway
15.
Sci Rep ; 10(1): 5363, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210313

ABSTRACT

Muscle resident fibro-adipogenic progenitors (FAPs), support muscle regeneration by releasing cytokines that stimulate the differentiation of myogenic stem cells. However, in non-physiological contexts (myopathies, atrophy, aging) FAPs cause fibrotic and fat infiltrations that impair muscle function. We set out to perform a fluorescence microscopy-based screening to identify compounds that perturb the differentiation trajectories of these multipotent stem cells. From a primary screen of 1,120 FDA/EMA approved drugs, we identified 34 compounds as potential inhibitors of adipogenic differentiation of FAPs isolated from the murine model (mdx) of Duchenne muscular dystrophy (DMD). The hit list from this screen was surprisingly enriched with compounds from the glucocorticoid (GCs) chemical class, drugs that are known to promote adipogenesis in vitro and in vivo. To shed light on these data, three GCs identified in our screening efforts were characterized by different approaches. We found that like dexamethasone, budesonide inhibits adipogenesis induced by insulin in sub-confluent FAPs. However, both drugs have a pro-adipogenic impact when the adipogenic mix contains factors that increase the concentration of cAMP. Gene expression analysis demonstrated that treatment with glucocorticoids induces the transcription of Gilz/Tsc22d3, an inhibitor of the adipogenic master regulator PPARγ, only in anti-adipogenic conditions. Additionally, alongside their anti-adipogenic effect, GCs are shown to promote terminal differentiation of satellite cells. Both the anti-adipogenic and pro-myogenic effects are mediated by the glucocorticoid receptor and are not observed in the presence of receptor inhibitors. Steroid administration currently represents the standard treatment for DMD patients, the rationale being based on their anti-inflammatory effects. The findings presented here offer new insights on additional glucocorticoid effects on muscle stem cells that may affect muscle homeostasis and physiology.


Subject(s)
Cell Differentiation/drug effects , Drug Evaluation, Preclinical/methods , Glucocorticoids/pharmacology , Muscle Development/drug effects , Muscle, Skeletal/cytology , Adipogenesis/drug effects , Animals , Budesonide/administration & dosage , Budesonide/pharmacology , Cell Differentiation/physiology , Cells, Cultured , Cyclic AMP/metabolism , Mice, Inbred C57BL , Mice, Inbred mdx , Microscopy, Fluorescence , Muscle Development/physiology , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/pathology , PPAR gamma/metabolism , Receptors, Glucocorticoid/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/pathology , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/pathology , Transcription Factors/metabolism
16.
Life Sci Alliance ; 3(3)2020 03.
Article in English | MEDLINE | ID: mdl-32019766

ABSTRACT

In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry-based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the ß-catenin-follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Regeneration/physiology , Adipogenesis/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Diet, High-Fat , Disease Models, Animal , Dystrophin/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Fibers, Skeletal/physiology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Myoblasts/metabolism , Proteomics , Signal Transduction , Stem Cells/metabolism
17.
FEBS J ; 287(16): 3526-3550, 2020 08.
Article in English | MEDLINE | ID: mdl-31985874

ABSTRACT

RING finger protein 11 (RNF11) is an evolutionary conserved Really Interesting New Gene E3 ligase that is overexpressed in several human tumours. Although several reports have highlighted its involvement in crucial cellular processes, the mechanistic details underlying its function are still poorly understood. Utilizing stable isotope labelling by amino acids in culture (SILAC)-based proteomics analysis, we identified 51 proteins that co-immunoprecipitate with wild-type RNF11 and/or with its catalytically inactive mutant. We focused our attention on the interaction of RNF11 with Ankyrin repeat domain-containing protein 13 (ANKRD13)s family. Members of the ANKRD13 family contain ubiquitin-interacting motifs (UIM) that recognize the Lys-63-linked ubiquitin (Ub) chains appended to Epidermal growth factor receptor (EGFR) soon after ligand binding. We show that ANKRD13A, ANKRD13B and ANKRD13D form a complex with RNF11 in vivo and that the UIMs are required for complex formation. However, at odds with the conventional UIM binding mode, Ub modification of RNF11 is not required for the interaction with ANKRD13 proteins. We also show that the interaction between ANKRD13A and RNF11 is modulated by the EGF stimulus and that a complex formed by ANKRD13A, RNF11 and activated EGFR is transiently assembled in the early phases of receptor endocytosis. Moreover, loss of function of the E3 ligases Itchy E3 ubiquitin-protein ligase (ITCH) or RNF11, respectively, abrogates or increases the ubiquitination of endogenous ANKRD13A, affecting its ability to bind activated EGFR. We propose a model whereby the ANKRD13 proteins act as molecular scaffolds that promote the transient formation of a complex between the activated EGFR and the E3 ligases ITCH and RNF11. By regulating the ubiquitination status of ANKRD13A and consequently its endocytic adaptor function, RNF11 promotes sorting of the activated EGFR for lysosomal degradation.


Subject(s)
DNA-Binding Proteins/metabolism , ErbB Receptors/metabolism , Membrane Proteins/metabolism , Ubiquitin/metabolism , Binding Sites , DNA-Binding Proteins/genetics , Endosomes/metabolism , ErbB Receptors/genetics , HEK293 Cells , HeLa Cells , Humans , Ligands , Membrane Proteins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Protein Binding , Proteomics/methods
18.
Nucleic Acids Res ; 48(D1): D416-D421, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31598703

ABSTRACT

CancerGeneNet (https://signor.uniroma2.it/CancerGeneNet/) is a resource that links genes that are frequently mutated in cancers to cancer phenotypes. The resource takes advantage of a curation effort aimed at embedding a large fraction of the gene products that are found altered in cancer cells into a network of causal protein relationships. Graph algorithms, in turn, allow to infer likely paths of causal interactions linking cancer associated genes to cancer phenotypes thus offering a rational framework for the design of strategies to revert disease phenotypes. CancerGeneNet bridges two interaction layers by connecting proteins whose activities are affected by cancer drivers to proteins that impact on the 'hallmarks of cancer'. In addition, CancerGeneNet annotates curated pathways that are relevant to rationalize the pathological consequences of cancer driver mutations in selected common cancers and 'MiniPathways' illustrating regulatory circuits that are frequently altered in different cancers.


Subject(s)
Databases, Genetic , Neoplasms/genetics , Proteins/genetics , Algorithms , Antineoplastic Agents/pharmacology , Computer Graphics , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Phenotype , User-Computer Interface
19.
Nucleic Acids Res ; 48(D1): D504-D510, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31665520

ABSTRACT

The SIGnaling Network Open Resource 2.0 (SIGNOR 2.0) is a public repository that stores signaling information as binary causal relationships between biological entities. The captured information is represented graphically as a signed directed graph. Each signaling relationship is associated to an effect (up/down-regulation) and to the mechanism (e.g. binding, phosphorylation, transcriptional activation, etc.) causing the up/down-regulation of the target entity. Since its first release, SIGNOR has undergone a significant content increase and the number of annotated causal interactions have almost doubled. SIGNOR 2.0 now stores almost 23 000 manually-annotated causal relationships between proteins and other biologically relevant entities: chemicals, phenotypes, complexes, etc. We describe here significant changes in curation policy and a new confidence score, which is assigned to each interaction. We have also improved the compliance to the FAIR data principles by providing (i) SIGNOR stable identifiers, (ii) programmatic access through REST APIs, (iii) bioschemas and (iv) downloadable data in standard-compliant formats, such as PSI-MI CausalTAB and GMT. The data are freely accessible and downloadable at https://signor.uniroma2.it/.


Subject(s)
Databases, Factual , Signal Transduction , Software , Animals , Humans , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...