Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Hortic Res ; 11(6): uhae106, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38883330

ABSTRACT

The vast majority of traditional almond varieties are self-incompatible, and the level of variability of the species is very high, resulting in a high-heterozygosity genome. Therefore, information on the different haplotypes is particularly relevant to understand the genetic basis of trait variability in this species. However, although reference genomes for several almond varieties exist, none of them is phased and has genome information at the haplotype level. Here, we present a phased assembly of genome of the almond cv. Texas. This new assembly has 13% more assembled sequence than the previous version of the Texas genome and has an increased contiguity, in particular in repetitive regions such as the centromeres. Our analysis shows that the 'Texas' genome has a high degree of heterozygosity, both at SNPs, short indels, and structural variants level. Many of the SVs are the result of heterozygous transposable element insertions, and in many cases, they also contain genic sequences. In addition to the direct consequences of this genic variability on the presence/absence of genes, our results show that variants located close to genes are often associated with allele-specific gene expression, which highlights the importance of heterozygous SVs in almond.

2.
Rice (N Y) ; 17(1): 22, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530496

ABSTRACT

Allelopathy has been considered as a natural method of weed control. Despite the nature of allelochemical compounds has been studied, little is known about the genetic basis underlying allelopathy. However, it is known that rice exhibits diverse allelopathic potentials across varieties, and breeding for rice plants exhibiting allelopathic potential conferring an advantage against weeds in paddy fields would be highly desirable. Knowledge of the gene factors and the identification of the genomic regions responsible for allelopathy would facilitate breeding programs. Taking advantage of the existing genetic diversity in rice, particularly in temperate japonica rice, we conducted a comprehensive investigation into the genetic determinants that contribute to rice allelopathy. Employing Genome-Wide Association Study, we identified four Quantitative Trait Loci, with the most promising loci situated on chromosome 2 and 5. Subsequent inspection of the genes located within these QTLs revealed genes associated with the biosynthesis of secondary metabolites such as Phenylalanine Ammonia Lyase (PAL), a key enzyme in the synthesis of phenolic compounds, and two genes coding for R2R3-type MYB transcription factors. The identification of these two QTLs associated to allelopathy in rice provides a useful tool for further exploration and targeted breeding strategies.

3.
New Phytol ; 242(4): 1676-1690, 2024 May.
Article in English | MEDLINE | ID: mdl-38148573

ABSTRACT

Soil fungi belonging to different functional guilds, such as saprotrophs, pathogens, and mycorrhizal symbionts, play key roles in forest ecosystems. To date, no study has compared the actual gene expression of these guilds in different forest soils. We used metatranscriptomics to study the competition for organic resources by these fungal groups in boreal, temperate, and Mediterranean forest soils. Using a dedicated mRNA annotation pipeline combined with the JGI MycoCosm database, we compared the transcripts of these three fungal guilds, targeting enzymes involved in C- and N mobilization from plant and microbial cell walls. Genes encoding enzymes involved in the degradation of plant cell walls were expressed at a higher level in saprotrophic fungi than in ectomycorrhizal and pathogenic fungi. However, ectomycorrhizal and saprotrophic fungi showed similarly high expression levels of genes encoding enzymes involved in fungal cell wall degradation. Transcripts for N-related transporters were more highly expressed in ectomycorrhizal fungi than in other groups. We showed that ectomycorrhizal and saprotrophic fungi compete for N in soil organic matter, suggesting that their interactions could decelerate C cycling. Metatranscriptomics provides a unique tool to test controversial ecological hypotheses and to better understand the underlying ecological processes involved in soil functioning and carbon stabilization.


Subject(s)
Forests , Fungi , Soil Microbiology , Transcriptome , Fungi/genetics , Fungi/physiology , Transcriptome/genetics , Mycorrhizae/physiology , Mycorrhizae/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Nitrogen/metabolism , Soil/chemistry , Ecosystem , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Elife ; 122023 07 19.
Article in English | MEDLINE | ID: mdl-37467142

ABSTRACT

Transposable elements (TEs) are an important source of genome variability. Here, we analyze their contribution to gene expression variability in rice by performing a TE insertion polymorphism expression quantitative trait locus mapping using expression data from 208 varieties from the Oryza sativa ssp. indica and O. sativa ssp. japonica subspecies. Our data show that TE insertions are associated with changes of expression of many genes known to be targets of rice domestication and breeding. An important fraction of these insertions were already present in the rice wild ancestors, and have been differentially selected in indica and japonica rice populations. Taken together, our results show that small changes of expression in signal transduction genes induced by TE insertions accompany the domestication and adaptation of rice populations.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding , Polymorphism, Genetic , Domestication , Gene Expression , Genome, Plant
5.
Hortic Res ; 9: uhac127, 2022.
Article in English | MEDLINE | ID: mdl-35928404

ABSTRACT

Hybridization has been widely used in breeding of cultivated species showing low genetic variability, such as peach (Prunus persica). The merging of two different genomes in a hybrid often triggers a so-called "genomic shock" with changes in DNA methylation and in the induction of transposable element expression and mobilization. Here, we analysed the DNA methylation and transcription levels of transposable elements and genes in leaves of Prunus persica and Prunus dulcis and in an F1 hybrid using high-throughput sequencing technologies. Contrary to the "genomic shock" expectations, we found that the overall levels of DNA methylation in the transposable elements in the hybrid are not significantly altered compared with those of the parental genomes. We also observed that the levels of transcription of the transposable elements in the hybrid are in most cases intermediate as compared with that of the parental species and we have not detected cases of higher transcription in the hybrid. We also found that the proportion of genes whose expression is altered in the hybrid compared with the parental species is low. The expression of genes potentially involved in the regulation of the activity of the transposable elements is not altered. We can conclude that the merging of the two parental genomes in this Prunus persica x Prunus dulcis hybrid does not result in a "genomic shock" with significant changes in the DNA methylation or in the transcription. The absence of major changes may facilitate using interspecific peach x almond crosses for peach improvement.

6.
Theor Appl Genet ; 135(9): 3211-3222, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35931838

ABSTRACT

KEY MESSAGE: Transposon insertion polymorphisms can improve prediction of complex agronomic traits in rice compared to using SNPs only, especially when accessions to be predicted are less related to the training set. Transposon insertion polymorphisms (TIPs) are significant sources of genetic variation. Previous work has shown that TIPs can improve detection of causative loci on agronomic traits in rice. Here, we quantify the fraction of variance explained by single nucleotide polymorphisms (SNPs) compared to TIPs, and we explore whether TIPs can improve prediction of traits when compared to using only SNPs. We used eleven traits of agronomic relevance from by five different rice population groups (Aus, Indica, Aromatic, Japonica, and Admixed), 738 accessions in total. We assess prediction by applying data split validation in two scenarios. In the within-population scenario, we predicted performance of improved Indica varieties using the rest of Indica accessions. In the across population scenario, we predicted all Aromatic and Admixed accessions using the rest of populations. In each scenario, Bayes C and a Bayesian reproducible kernel Hilbert space regression were compared. We find that TIPs can explain an important fraction of total genetic variance and that they also improve genomic prediction. In the across population prediction scenario, TIPs outperformed SNPs in nine out of the eleven traits analyzed. In some traits like leaf senescence or grain width, using TIPs increased predictive correlation by 30-50%. Our results evidence, for the first time, that TIPs genotyping can improve prediction on complex agronomic traits in rice, especially when accessions to be predicted are less related to training accessions.


Subject(s)
Oryza , Bayes Theorem , DNA Transposable Elements , Oryza/genetics , Phenotype , Polymorphism, Single Nucleotide
7.
Plant J ; 107(1): 118-135, 2021 07.
Article in English | MEDLINE | ID: mdl-33866641

ABSTRACT

Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.


Subject(s)
DNA Transposable Elements/genetics , Inverted Repeat Sequences/genetics , Oryza/genetics , Genome-Wide Association Study , Linkage Disequilibrium , Oryza/physiology , Phenotype , Polymorphism, Single Nucleotide
8.
Genes (Basel) ; 13(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35052394

ABSTRACT

Pineapple (Ananas comosus (L.) Merr.) is the second most important tropical fruit crop globally, and 'MD2' is the most important cultivated variety. A high-quality genome is important for molecular-based breeding, but available pineapple genomes still have some quality limitations. Here, PacBio and Hi-C data were used to develop a new high-quality MD2 assembly and gene prediction. Compared to the previous MD2 assembly, major improvements included a 26.6-fold increase in contig N50 length, phased chromosomes, and >6000 new genes. The new MD2 assembly also included 161.6 Mb additional sequences and >3000 extra genes compared to the F153 genome. Over 48% of the predicted genes harbored potential deleterious mutations, indicating that the high level of heterozygosity in this species contributes to maintaining functional alleles. The genome was used to characterize the FAR1-RELATED SEQUENCE (FRS) genes that were expanded in pineapple and rice. Transposed and dispersed duplications contributed to expanding the numbers of these genes in the pineapple lineage. Several AcFRS genes were differentially expressed among tissue-types and stages of flower development, suggesting that their expansion contributed to evolving specialized functions in reproductive tissues. The new MD2 assembly will serve as a new reference for genetic and genomic studies in pineapple.


Subject(s)
Ananas/genetics , Chromosomes, Plant/genetics , Genetic Variation , Genome, Plant , Haplotypes , Molecular Sequence Annotation/methods , Plant Proteins/genetics , Ananas/growth & development , Chromosome Mapping , Gene Expression Regulation, Plant , Genomics , Sequence Analysis, DNA
9.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33211093

ABSTRACT

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Subject(s)
Agaricales/genetics , Genome, Fungal , Lignin/metabolism , Peroxidases/genetics , Phylogeny , Agaricales/enzymology , Ecosystem , Multigene Family , Peroxidases/metabolism
10.
Plant J ; 101(2): 455-472, 2020 01.
Article in English | MEDLINE | ID: mdl-31529539

ABSTRACT

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.


Subject(s)
Base Sequence , DNA Transposable Elements/genetics , Genome, Plant , Prunus dulcis/genetics , Prunus persica/genetics , Chromosome Mapping , DNA Methylation , Domestication , Evolution, Molecular , Genes, Plant/genetics , Phylogeny , Seeds , Species Specificity
11.
Bioinformatics ; 36(4): 1191-1197, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31580402

ABSTRACT

MOTIVATION: Transposable elements (TEs) constitute a significant proportion of the majority of genomes sequenced to date. TEs are responsible for a considerable fraction of the genetic variation within and among species. Accurate genotyping of TEs in genomes is therefore crucial for a complete identification of the genetic differences among individuals, populations and species. RESULTS: In this work, we present a new version of T-lex, a computational pipeline that accurately genotypes and estimates the population frequencies of reference TE insertions using short-read high-throughput sequencing data. In this new version, we have re-designed the T-lex algorithm to integrate the BWA-MEM short-read aligner, which is one of the most accurate short-read mappers and can be launched on longer short-reads (e.g. reads >150 bp). We have added new filtering steps to increase the accuracy of the genotyping, and new parameters that allow the user to control both the minimum and maximum number of reads, and the minimum number of strains to genotype a TE insertion. We also showed for the first time that T-lex3 provides accurate TE calls in a plant genome. AVAILABILITY AND IMPLEMENTATION: To test the accuracy of T-lex3, we called 1630 individual TE insertions in Drosophila melanogaster, 1600 individual TE insertions in humans, and 3067 individual TE insertions in the rice genome. We showed that this new version of T-lex is a broadly applicable and accurate tool for genotyping and estimating TE frequencies in organisms with different genome sizes and different TE contents. T-lex3 is available at Github: https://github.com/GonzalezLab/T-lex3. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Animals , Gene Frequency , Genotype , Humans , Whole Genome Sequencing
12.
Int J Genomics ; 2019: 9702342, 2019.
Article in English | MEDLINE | ID: mdl-31192251

ABSTRACT

Long noncoding RNAs have been thoroughly studied in plants, animals, and yeasts, where they play important roles as regulators of transcription. Nevertheless, almost nothing is known about their presence and characteristics in filamentous fungi, especially in basidiomycetes. In the present study, we have carried out an exhaustive annotation and characterization of lncRNAs in two lignin degrader basidiomycetes, Coniophora puteana and Serpula lacrymans. We identified 2,712 putative lncRNAs in the former and 2,242 in the latter, mainly originating from intergenic locations of transposon-sparse genomic regions. The lncRNA length, GC content, expression levels, and stability of the secondary structure differ from coding transcripts but are similar in these two species and resemble that of other eukaryotes. Nevertheless, they lack sequence conservation. Also, we found that lncRNAs are transcriptionally regulated in the same proportion as genes when the fungus actively decomposes soil organic matter. Finally, up to 7% of the upstream gene regions of Coniophora puteana and Serpula lacrymans are transcribed and produce lncRNAs. The study of expression trends in these gene-lncRNA pairs uncovered groups with similar and opposite transcriptional profiles which may be the result of cis-transcriptional regulation.

13.
Front Plant Sci ; 10: 1815, 2019.
Article in English | MEDLINE | ID: mdl-32076428

ABSTRACT

The published melon (Cucumis melo L.) reference genome assembly (v3.6.1) has still 41.6 Mb (Megabases) of sequences unassigned to pseudo-chromosomes and about 57 Mb of gaps. Although different approaches have been undertaken to improve the melon genome assembly in recent years, the high percentage of repeats (~40%) and limitations due to read length have made it difficult to resolve gaps and scaffold's misassignments to pseudomolecules, especially in the heterochromatic regions. Taking advantage of the PacBio single- molecule real-time (SMRT) sequencing technology, an improvement of the melon genome was achieved. About 90% of the gaps were filled and the unassigned sequences were drastically reduced. A lift-over of the latest annotation v4.0 allowed to re-collocate protein-coding genes belonging to the unassigned sequences to the pseudomolecules. A direct proof of the improvement reached in the new melon assembly was highlighted looking at the improved annotation of the transposable element fraction. By screening the new assembly, we discovered many young (inserted less than 2Mya), polymorphic LTR-retrotransposons that were not captured in the previous reference genome. These elements sit mostly in the pericentromeric regions, but some of them are inserted in the upstream region of genes suggesting that they can have regulatory potential. This improved reference genome will provide an invaluable tool for identifying new gene or transposon variants associated with important phenotypes.

14.
Mob DNA ; 10: 53, 2019.
Article in English | MEDLINE | ID: mdl-31892957

ABSTRACT

BACKGROUND: Transposable elements (TEs) are an important source of genomic variability in eukaryotic genomes. Their activity impacts genome architecture and gene expression and can lead to drastic phenotypic changes. Therefore, identifying TE polymorphisms is key to better understand the link between genotype and phenotype. However, most genotype-to-phenotype analyses have concentrated on single nucleotide polymorphisms as they are easier to reliable detect using short-read data. Many bioinformatic tools have been developed to identify transposon insertions from resequencing data using short reads. Nevertheless, the performance of most of these tools has been tested using simulated insertions, which do not accurately reproduce the complexity of natural insertions. RESULTS: We have overcome this limitation by building a dataset of insertions from the comparison of two high-quality rice genomes, followed by extensive manual curation. This dataset contains validated insertions of two very different types of TEs, LTR-retrotransposons and MITEs. Using this dataset, we have benchmarked the sensitivity and precision of 12 commonly used tools, and our results suggest that in general their sensitivity was previously overestimated when using simulated data. Our results also show that, increasing coverage leads to a better sensitivity but with a cost in precision. Moreover, we found important differences in tool performance, with some tools performing better on a specific type of TEs. We have also used two sets of experimentally validated insertions in Drosophila and humans and show that this trend is maintained in genomes of different size and complexity. CONCLUSIONS: We discuss the possible choice of tools depending on the goals of the study and show that the appropriate combination of tools could be an option for most approaches, increasing the sensitivity while maintaining a good precision.

15.
DNA Res ; 25(5): 451-464, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29893819

ABSTRACT

Transposable elements constitute an important fraction of eukaryotic genomes. Given their mutagenic potential, host-genomes have evolved epigenetic defense mechanisms to limit their expansion. In fungi, epigenetic modifications have been widely studied in ascomycetes, although we lack a global picture of the epigenetic landscape in basidiomycetes. In this study, we analysed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity and suggest that 21 nt small RNAs play a key role in transposon silencing. Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Remarkably, we found that nucleus-specific methylation levels varied in dikaryotic strains sharing identical genetic complement but different subculture conditions. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes. This study provides an integrated picture of epigenetic defense mechanisms leading to the transcriptional silencing of transposons and surrounding genes in basidiomycetes. Moreover, our findings suggest that transcriptional but not methylation reprogramming triggers fruitbody development in P. ostreatus.


Subject(s)
DNA Transposable Elements , Epigenesis, Genetic , Gene Expression Regulation, Fungal , Gene Silencing , Life Cycle Stages/genetics , Pleurotus/growth & development , Pleurotus/genetics , DNA Methylation , Gene Expression Profiling , Genome, Fungal , Transcription, Genetic , Transcriptome , Whole Genome Sequencing
16.
BMC Genomics ; 18(1): 883, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29145801

ABSTRACT

BACKGROUND: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including saprotrophs and ectomycorrhizal fungi that show important differences in genome size. RESULTS: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of 10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTR-retrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of Boletales over the last 60 million years. CONCLUSIONS: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their role in the differential genome expansions found in Boletales species.


Subject(s)
Basidiomycota/genetics , Evolution, Molecular , Genome, Fungal , Basidiomycota/classification , Fungal Proteins/genetics , Genome Size , Genomics , Molecular Sequence Annotation , Multigene Family , Phylogeny , Proteomics , RNA-Directed DNA Polymerase/genetics , Retroelements , Terminal Repeat Sequences
17.
DNA Res ; 24(2): 103-115, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28431016

ABSTRACT

Helitrons constitute a superfamily of DNA transposons that were discovered in silico and are widespread in most eukaryotic genomes. They are postulated to mobilize through a "rolling-circle" mechanism, but the experimental evidence of their transposition has been described only recently. Here, we present the inheritance patterns of HELPO1 and HELPO2 helitron families in meiotically derived progeny of the basidiomycete Pleurotus ostreatus. We found distorted segregation patterns of HELPO2 helitrons that led to a strong under-representation of these elements in the progeny. Further investigation of HELPO2 flanking sites showed that gene conversion may contribute to the elimination of such repetitive elements in meiosis, favouring the presence of HELPO2 vacant loci. In addition, the analysis of HELPO2 content in a reconstructed pedigree of subclones maintained under different culture conditions revealed an event of helitron somatic transposition. Additional analyses of genome and transcriptome data indicated that P. ostreatus carries active RNAi machinery that could be involved in the control of transposable element proliferation. Our results provide the first evidence of helitron mobilization in the fungal kingdom and highlight the interaction between genome defence mechanisms and invasive DNA.


Subject(s)
DNA Transposable Elements , Genome, Fungal , Inheritance Patterns , Meiosis , Pleurotus/genetics , RNA Interference
18.
Appl Microbiol Biotechnol ; 101(4): 1337-1350, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28074220

ABSTRACT

The phylum Basidiomycota includes filamentous fungi and yeast species with different ecological and genomic characteristics. Transposable elements (TEs) are abundant components of most eukaryotic genomes, and their transition from being genomic parasites to key drivers of genomic architecture, functionality, and evolution is a subject receiving much attention. In light of the abundant genomic information released during the last decade, the aims of this mini-review are to discuss the dynamics and impact of TEs in basidiomycete fungi. To do this, we surveyed and explored data from 75 genomes, which encompass the phylogenetic diversity of the phylum Basidiomycota. We describe annotation approaches and analyze TE distribution in the context of species phylogeny and genome size. Further, we review the most relevant literature about the role of TEs in species lifestyle, their impact on genome architecture and functionality, and the defense mechanisms evolved to control their proliferation. Finally, we discuss potential applications of TEs that can drive future innovations in fungal research.


Subject(s)
Basidiomycota/genetics , DNA Transposable Elements/genetics , Basidiomycota/classification , Genome, Fungal/genetics , Phylogeny
19.
PLoS Genet ; 12(6): e1006108, 2016 06.
Article in English | MEDLINE | ID: mdl-27294409

ABSTRACT

Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.


Subject(s)
Ascomycota/genetics , DNA Transposable Elements/genetics , Genome, Fungal/genetics , Pleurotus/genetics , Retroelements/genetics , Transcription, Genetic/genetics , Base Sequence , DNA, Fungal/genetics , Sequence Alignment , Sequence Analysis, DNA
20.
Environ Microbiol ; 18(12): 4710-4726, 2016 12.
Article in English | MEDLINE | ID: mdl-27117896

ABSTRACT

Fungi interact with their environment by secreting proteins to obtain nutrients, elicit responses and modify their surroundings. Because the set of proteins secreted by a fungus is related to its lifestyle, it should be possible to use it as a tool to predict fungal lifestyle. To test this hypothesis, we bioinformatically identified 538 and 554 secretable proteins in the monokaryotic strains PC9 and PC15 of the white rot basidiomycete Pleurotus ostreatus. Functional annotation revealed unknown functions (37.2%), glycosyl hydrolases (26.5%) and redox enzymes (11.5%) as the main groups in the two strains. When these results were combined with RNA-seq analyses, we found that the relative importance of each group was different in different strains and culture conditions and the relevance of the unknown function proteins was enhanced. Only a few genes were actively expressed in a given culture condition in expanded multigene families, suggesting that family expansi on could increase adaptive opportunities rather than activity under a specific culture condition. Finally, we used the set of P. ostreatus secreted proteins as a query to search their counterparts in other fungal genomes and found that the secretome profiles cluster the tested basidiomycetes into lifestyle rather than phylogenetic groups.


Subject(s)
Fungal Proteins/metabolism , Pleurotus/metabolism , Genome, Fungal , Lignin/metabolism , Multigene Family , Phylogeny , Pleurotus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...