Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Chem Inf Model ; 63(4): 1166-1176, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36790087

ABSTRACT

Purchasable chemical space has grown rapidly into the tens of billions of molecules, providing unprecedented opportunities for ligand discovery but straining the tools that might exploit these molecules at scale. We have therefore developed ZINC-22, a database of commercially accessible small molecules derived from multi-billion-scale make-on-demand libraries. The new database and tools enable analog searching in this vast new space via a facile GUI, CartBlanche, drawing on similarity methods that scale sublinearly in the number of molecules. The new library also uses data organization methods, enabling rapid lookup of molecules and their physical properties, including conformations, partial atomic charges, c Log P values, and solvation energies, all crucial for molecule docking, which had become slow with older database organizations in previous versions of ZINC. As the libraries have continued to grow, we have been interested in finding whether molecular diversity has suffered, for instance, because certain scaffolds have come to dominate via easy analoging. This has not occurred thus far, and chemical diversity continues to grow with database size, with a log increase in Bemis-Murcko scaffolds for every two-log unit increase in database size. Most new scaffolds come from compounds with the highest heavy atom count. Finally, we consider the implications for databases like ZINC as the libraries grow toward and beyond the trillion-molecule range. ZINC is freely available to everyone and may be accessed at cartblanche22.docking.org, via Globus, and in the Amazon AWS and Oracle OCI clouds.


Subject(s)
Zinc , Ligands , Databases, Factual , Molecular Conformation , Molecular Docking Simulation
2.
Article in English | MEDLINE | ID: mdl-38545917

ABSTRACT

How well a caption fits an image can be difficult to assess due to the subjective nature of caption quality. What is a good caption? We investigate this problem by focusing on image-caption ratings and by generating high quality datasets from human feedback with gamification. We validate the datasets by showing a higher level of inter-rater agreement, and by using them to train custom machine learning models to predict new ratings. Our approach outperforms previous metrics - the resulting datasets are more easily learned and are of higher quality than other currently available datasets for image-caption rating.

SELECTION OF CITATIONS
SEARCH DETAIL
...