Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(16)2019 Aug 10.
Article in English | MEDLINE | ID: mdl-31405181

ABSTRACT

Sensitive and selective personal exposure monitors are needed to assess ozone (O3) concentrations in the workplace atmosphere in real time for the analysis and prevention of health risks. Here, a cumulative gas sensor using visible spectroscopy for real-time O3 determination is described. The sensing chip is a mesoporous silica thin film deposited on transparent glass and impregnated with methylene blue (MB). The sensor is reproducible, stable for at least 50 days, sensitive to 10 ppb O3 (one-tenth of the occupational exposure limit value in France, Swiss, Canada, U.K., Japan, and the USA) with a measurement range tested up to 500 ppb, and insensitive to NO2 and to large variation in relative humidity. A model and its derivative as a function of time are proposed to convert in real time the sensor response to concentrations, and an excellent correlation was obtained between those data and reference O3 concentrations. This sensor is based on a relatively cheap sensing material and a robust detection system, and its analytical performance makes it suitable for monitoring real-time O3 concentrations in workplaces to promote a safer environment for workers.

2.
Neurotoxicol Teratol ; 35: 1-6, 2013.
Article in English | MEDLINE | ID: mdl-23183362

ABSTRACT

Toluene (Tol) is an organic solvent widely used in the industry. It is also abused as an inhaled solvent, and can have deleterious effects on hearing. Recently, it was demonstrated that Tol has both anticholinergic and antiglutamatergic effects, and that it also inhibits voltage-dependent Ca(2+) channels. This paper describes a study of the effects of inhaled Tol on rats anesthetized with isoflurane, pentobarbital, or a mixture of ketamine/xylazine. Hearing was tested using distortion product oto-acoustic emissions (DPOAEs) associated with a contralateral noise to evaluate contraction of the middle-ear muscles. This allowed us to assess the interactions between the effects of Tol and anesthesia on the central nervous system (CNS). Although both anesthetics and Tol are known to inhibit the middle-ear acoustic reflex, our data indicated that inhaled Tol counterbalances the effects of anesthetic in a dose-dependent manner. In other terms, Tol can increase the amplitude of the middle-ear reflex in anesthetized rats, whatever the nature of the anesthetic used. This indicates that inhaling Tol (a Ca(2+)-channel-blocking drug) modifies the potency of anesthesia, and thereby the amplitude of the middle-ear reflex.


Subject(s)
Anesthetics/pharmacology , Ear, Middle/drug effects , Reflex, Acoustic/drug effects , Solvents/administration & dosage , Toluene/administration & dosage , Acoustic Stimulation , Acoustics , Administration, Inhalation , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electrodes, Implanted , Electromyography , Evoked Potentials, Motor/drug effects , Evoked Potentials, Motor/physiology , Male , Otoacoustic Emissions, Spontaneous/drug effects , Rats , Solvents/metabolism , Toluene/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...